XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3 3283
Pandiyan, A., Uthayakumar, A., Subrayan, R., Cha, S. W.
and Krishna Moorthy, S. B. 2019. Review of solid oxide
electrolysis cells: a clean energy strategy for hydrogen
generation. Nanomaterials and Energy 8(1):2–22. doi:
10.1680/jnaen.18.00009.
Saffirio, S., Pylypko, S., Fiorot, S., Schiavi, I., Fiore, S.,
Santarelli, M., Ferrero, D., Smeacetto, F. and Fiorilli,
S. 2022. Hydrothermally-assisted recovery of Yttria-
stabilized zirconia (YSZ) from end-of-life solid oxide
cells. Sustainable Materials and Technologies 33:e00473.
doi: 10.1016/j.susmat.2022.e00473.
Sarner, S., Menzler, N. H., Hilgers, A. and Guillon, O.
2023. Recycling and Reuse Strategies for Ceramic
Components of Solid Oxide Cells. ECS Transactions
111(6):1369–1378. doi: 10.1149/11106.1369ecst.
Sarner, S., Schreiber, A., Menzler, N. H. and Guillon,
O. 2022. Recycling Strategies for Solid Oxide Cells.
Advanced Energy Materials 12(35):2201805. doi:
10.1002/aenm.202201805.
Sebbahi, S., Nabil, N., Alaoui-Belghiti, A., Laasri, S.,
Rachidi, S. and Hajjaji, A. 2022. Assessment of the
three most developed water electrolysis technolo-
gies: Alkaline Water Electrolysis, Proton Exchange
Membrane and Solid-Oxide Electrolysis. Materials
Today: Proceedings 66:140–145. doi: 10.1016
/j.matpr.2022.04.264.
Staffell, I., Scamman, D., Velazquez Abad, A., Balcombe,
P., Dodds, P. E., Ekins, P., Shah, N. and Ward, K.
R. 2019. The role of hydrogen and fuel cells in the
global energy system. Energy &Environmental Science
12(2):463–491. doi: 10.1039/c8ee01157e.
Sun, X., Chen, M., Liu, Y.-L. and Hendriksen, P. V.
2015. Life Time Performance Characterization
of Solid Oxide Electrolysis Cells for Hydrogen
Production. ECS Transactions 68(1):3359–3368. doi:
10.1149/06801.3359ecst.
U.S. Geological Survey 2022. Final List of Critical Minerals.
U.S.: Department of the Interior.
Udomsilp, D., Lenser, C., Guillon, O. and Menzler, N. H.
2021. Performance Benchmark of Planar Solid Oxide
Cells Based on Material Development and Designs.
Energy Technology 9(4):2001062. doi: 10.1002
/ente.202001062.
Valente, A., Iribarren, D. and Dufour, J. 2019. End
of life of fuel cells and hydrogen products: From
technologies to strategies. International Journal of
Hydrogen Energy 44(38):20965–20977. doi: 10.1016
/j.ijhydene.2019.01.110.
Wang, L., Chen, M., Küngas, R., Lin, T.-E., Diethelm, S.,
Maréchal, F. and Van herle, J. 2019. Power-to-fuels via
solid-oxide electrolyzer: Operating window and techno-
economics. Renewable and Sustainable Energy Reviews
110:174–187. doi: 10.1016/j.rser.2019.04.071.
Wolf, S. E., Winterhalder, F. E., Vibhu, V., de Haart, L.
G. J., Guillon, O., Eichel, R.-A. and Menzler, N. H.
2023. Solid oxide electrolysis cells—current mate-
rial development and industrial application. Journal
of Materials Chemistry A 11(34):17977–18028. doi:
10.1039/d3ta02161k.
Yenesew, G. T., Quarez, E., Le Gal La Salle, A., Nicollet, C.
and Joubert, O. 2023. Recycling and characterization of
end-of-life solid oxide fuel/electrolyzer ceramic material
cell components. Resources, Conservation and Recycling
190:106809. doi: 10.1016/j.resconrec.2022.106809.
Pandiyan, A., Uthayakumar, A., Subrayan, R., Cha, S. W.
and Krishna Moorthy, S. B. 2019. Review of solid oxide
electrolysis cells: a clean energy strategy for hydrogen
generation. Nanomaterials and Energy 8(1):2–22. doi:
10.1680/jnaen.18.00009.
Saffirio, S., Pylypko, S., Fiorot, S., Schiavi, I., Fiore, S.,
Santarelli, M., Ferrero, D., Smeacetto, F. and Fiorilli,
S. 2022. Hydrothermally-assisted recovery of Yttria-
stabilized zirconia (YSZ) from end-of-life solid oxide
cells. Sustainable Materials and Technologies 33:e00473.
doi: 10.1016/j.susmat.2022.e00473.
Sarner, S., Menzler, N. H., Hilgers, A. and Guillon, O.
2023. Recycling and Reuse Strategies for Ceramic
Components of Solid Oxide Cells. ECS Transactions
111(6):1369–1378. doi: 10.1149/11106.1369ecst.
Sarner, S., Schreiber, A., Menzler, N. H. and Guillon,
O. 2022. Recycling Strategies for Solid Oxide Cells.
Advanced Energy Materials 12(35):2201805. doi:
10.1002/aenm.202201805.
Sebbahi, S., Nabil, N., Alaoui-Belghiti, A., Laasri, S.,
Rachidi, S. and Hajjaji, A. 2022. Assessment of the
three most developed water electrolysis technolo-
gies: Alkaline Water Electrolysis, Proton Exchange
Membrane and Solid-Oxide Electrolysis. Materials
Today: Proceedings 66:140–145. doi: 10.1016
/j.matpr.2022.04.264.
Staffell, I., Scamman, D., Velazquez Abad, A., Balcombe,
P., Dodds, P. E., Ekins, P., Shah, N. and Ward, K.
R. 2019. The role of hydrogen and fuel cells in the
global energy system. Energy &Environmental Science
12(2):463–491. doi: 10.1039/c8ee01157e.
Sun, X., Chen, M., Liu, Y.-L. and Hendriksen, P. V.
2015. Life Time Performance Characterization
of Solid Oxide Electrolysis Cells for Hydrogen
Production. ECS Transactions 68(1):3359–3368. doi:
10.1149/06801.3359ecst.
U.S. Geological Survey 2022. Final List of Critical Minerals.
U.S.: Department of the Interior.
Udomsilp, D., Lenser, C., Guillon, O. and Menzler, N. H.
2021. Performance Benchmark of Planar Solid Oxide
Cells Based on Material Development and Designs.
Energy Technology 9(4):2001062. doi: 10.1002
/ente.202001062.
Valente, A., Iribarren, D. and Dufour, J. 2019. End
of life of fuel cells and hydrogen products: From
technologies to strategies. International Journal of
Hydrogen Energy 44(38):20965–20977. doi: 10.1016
/j.ijhydene.2019.01.110.
Wang, L., Chen, M., Küngas, R., Lin, T.-E., Diethelm, S.,
Maréchal, F. and Van herle, J. 2019. Power-to-fuels via
solid-oxide electrolyzer: Operating window and techno-
economics. Renewable and Sustainable Energy Reviews
110:174–187. doi: 10.1016/j.rser.2019.04.071.
Wolf, S. E., Winterhalder, F. E., Vibhu, V., de Haart, L.
G. J., Guillon, O., Eichel, R.-A. and Menzler, N. H.
2023. Solid oxide electrolysis cells—current mate-
rial development and industrial application. Journal
of Materials Chemistry A 11(34):17977–18028. doi:
10.1039/d3ta02161k.
Yenesew, G. T., Quarez, E., Le Gal La Salle, A., Nicollet, C.
and Joubert, O. 2023. Recycling and characterization of
end-of-life solid oxide fuel/electrolyzer ceramic material
cell components. Resources, Conservation and Recycling
190:106809. doi: 10.1016/j.resconrec.2022.106809.