3282 XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3
thereby recovering a concentrate of perovskites and almost
perovskite-free cell particles.
For the investigated cell, the particle fraction above
1 mm stressed by ultrasound, resulted in the comminution
of the particles and a decoating of the surface. Both of these
effects may contribute to the enrichment of perovskites in
the detached fine particles. Cell particles below 1 mm are
no longer being comminuted by fracturing, which indicates
a pure decoating. Although the particle fraction 1 mm
was only decoated and not comminuted, they exhibited a
slightly lower enrichment of perovskites than the particle
fraction 1 mm. An explanation for that phenomenon was
given by the higher surface area of fine particles and the
associated higher surface area that is not perovskite material
on which the decoating acts.
ACKNOWLEDGMENTS
The authors thank the Forschungszentrum Jülich for pro-
viding the solid oxide cells studied. The authors acknowl-
edge the funding provided by the H2Giga-project ReNaRe,
which was funded by the German Federal Ministry of
Education and Research (BMBF) (Grant No.: 03HY111A).
REFERENCES
Al Assadi, A., Goes, D., Baazouzi, S., Staudacher, M.,
Malczyk, P., Kraus, W., Nägele, F., Huber, M. F.,
Fleischer, J., Peuker, U. and Birke, K. P. 2023. Challenges
and prospects of automated disassembly of fuel cells for
a circular economy. Resources, Conservation &Recycling
Advances 19 doi: 10.1016/j.rcradv.2023.200172.
Badgett, A., Brauch, J., Buchheit, K., Hackett, G., Li, Y.,
Melaina, M., Ruth, M., Sandor, D., Summers, M. and
Upasani, S. 2022. Water Electrolyzers and Fuel Cells
Supply Chain-Supply Chain Deep Dive Assessment. U.S.
Department of Energy Office of Policy.
Capurso, T., Stefanizzi, M., Torresi, M. and Camporeale,
S. M. 2022. Perspective of the role of hydrogen in
the 21st century energy transition. Energy Conversion
and Management 251:114898. doi: 10.1016
/j.enconman.2021.114898.
Cinti, G., Discepoli, G., Bidini, G., Lanzini, A. and
Santarelli, M. 2016. Co-electrolysis of water and
CO2in a solid oxide electrolyzer (SOE) stack.
International Journal of Energy Research 40(2):207–
215. doi: 10.1002/er.3450.
European Commission, Study on the Critical Raw Materials
for the EU 2023—Final Report.
Frey, C. E., Fang, Q., Sebold, D., Blum, L. and Menzler,
N. H. 2018. A Detailed Post Mortem Analysis of
Solid Oxide Electrolyzer Cells after Long-Term Stack
Operation. Journal of The Electrochemical Society
165(5):F357-F364. doi: 10.1149/2.0961805jes.
Harboe, S., Schreiber, A., Margaritis, N., Blum, L.,
Guillon, O. and Menzler, N. H. 2020. Manufacturing
cost model for planar 5 kWel SOFC stacks at
Forschungszentrum Jülich. International Journal of
Hydrogen Energy 45(15):8015–8030. doi: 10.1016
/j.ijhydene.2020.01.082.
IEA 2023. Global Hydrogen Review 2023. Paris: IEA.
Jang, Y.-h., Lee, S., Shin, H. Y. and Bae, J. 2018. Development
and evaluation of a 3-cell stack of metal-based solid
oxide fuel cells fabricated via a sinter-joining method
for auxiliary power unit applications. International
Journal of Hydrogen Energy 43(33):16215–16229. doi:
10.1016/j.ijhydene.2018.06.141.
Ji, M. and Wang, J. 2021. Review and comparison of vari-
ous hydrogen production methods based on costs and
life cycle impact assessment indicators. International
Journal of Hydrogen Energy 46(78):38612–38635. doi:
10.1016/j.ijhydene.2021.09.142.
Kaiser, C., Buchwald, T. and Peuker, U. A. 2024. Ultrasonic
decoating as a new recycling path to separate oxy-
gen side layers of solid oxide cells. Green Chemistry
26(2):960–967. doi: 10.1039/d3gc03189f.
Kiemel, S., Smolinka, T., Lehner, F., Full, J., Sauer, A. and
Miehe, R. 2021. Critical materials for water electrolys-
ers at the example of the energy transition in Germany.
International Journal of Energy Research 45(7):9914–
9935. doi: 10.1002/er.6487.
Lei, C., Aldous, I., Hartley, J. M., Thompson, D. L.,
Scott, S., Hanson, R., Anderson, P. A., Kendrick, E.,
Sommerville, R., Ryder, K. S. and Abbott, A. P. 2021.
Lithium ion battery recycling using high-intensity
ultrasonication. Green Chemistry 23(13):4710–4715.
doi: 10.1039/d1gc01623g.
Nechache, A. and Hody, S. 2021. Alternative and innova-
tive solid oxide electrolysis cell materials: A short review.
Renewable and Sustainable Energy Reviews 149:111322.
doi: 10.1016/j.rser.2021.111322.
Ozturk, M. and Dincer, I. 2021. A comprehensive
review on power-to-gas with hydrogen options
for cleaner applications. International Journal of
Hydrogen Energy 46(62):31511–31522. doi: 10.1016
/j.ijhydene.2021.07.066.
Previous Page Next Page