XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3 899
Amankwaa-Kyeremeh, B., Greet, C., Skinner, W.,
Asamoah, R.K., 2021b. Correlating process mineral-
ogy and pulp chemistry for quick ore variability diag-
nosis, ed. International Future Mining Conference
Online, D. Australia Australia Australasian Institute of
Mining and Metallurgy, Australia, pp. 1–10.
Amankwaa-Kyeremeh, B., Greet, C., Zanin, M., Skinner,
W., Asamoah, R.K., 2020a. Predictability of rougher
flotation copper recovery using Gaussian process regres-
sion algorithm, eds. th, U.B.I.M., Mineral Conference
Tarkwa, G.A. Ghana UMaT, Ghana, pp. 1–8.
Amankwaa-Kyeremeh, B., Greet, C., Zanin, M., Skinner,
W., Asamoah, R.K., 2020b. Selecting key predic-
tor parameters for regression modelling using modi-
fied Neighbourhood Component Analysis (NCA)
Algorithm, eds. th, U.B.I.M., Mineral Conference
Tarkwa, G.A. Ghana UMaT, Ghana, pp. 320–325.
Amankwaa-Kyeremeh, B., McCamley, C., Zanin, M.,
Greet, C., Ehrig, K., Asamoah, R.K., Prediction and
Optimisation of Copper Recovery in the Rougher
Flotation Circuit. Minerals, 2024, 14(1), 36.
Amankwaa-Kyeremeh, B., Skinner, W., Asamoah, R.K.,
2021c. Comparative study on rougher copper recov-
ery prediction using selected predictive algorithms,
ed. International Future Mining Conference Online,
D. Australia Australia Australasian Institute of Mining
and Metallurgy, Australia, pp. 1–10.
Amankwaa-Kyeremeh, B., Zhang, J., Zanin, M., Skinner,
W., Asamoah, R.K., Feature selection and Gaussian
process prediction of rougher copper recovery. Minerals
Engineering, 2021d, 170(107041), 1–14.
Arthur, C.K., Temeng, V.A., Ziggah, Y.Y., Novel approach
to predicting blast-induced ground vibration using
Gaussian process regression. Engineering with
Computers, 2020, 36(1), 29–42.
Asamoah, R.K., Baawuah, E., Greet, C., Skinner, W.,
Characterisation of metal debris in grinding and flota-
tion circuits. Minerals Engineering, 2021, 171.
Bhavsar, H., Panchal, M.H., A review on support vector
machine for data classification. International Journal
of Advanced Research in Computer Engineering and
Technology, 2012, 1(10), 185–189.
Breiman, L., Cutler, A., Manual–Setting Up, Using, and
Understanding Random Forests, v 4.0, URL: ftp://ftp.
stat. berkeley. edu/pub/users/breiman. 2003.
Dankwah, J.B., Asamoah, R.K., Zanin, M., Skinner, W.,
Dense liquid flotation: Can coarse particle flotation
performance be enhanced by controlling fluid density?
Minerals Engineering, 2022a, 180, 107513.
Dankwah, J.B., Asamoah, R.K., Zanin, M., Skinner, W.,
Influence of water rate, gas rate, and bed particle size
on bed-level and coarse particle flotation performance.
Minerals Engineering, 2022b, 183, 107622.
Forson, P., Zanin, M., Abaka-Wood, G., Skinner, W.,
Asamoah, R., Flotation of auriferous arsenopyrite from
pyrite using thionocarbamate. Minerals Engineering,
2022, 181, 107524.
Forson, P., Zanin, M., Skinner, W., Asamoah, 2020. A brief
review of auriferous sulphide flotation concentration:.
pyrite and arsenopyrite mineral separation, In UMaT
Biennial International Mining Mineral Conference
Tarkwa, Ghana August. UMaT Ghana, Ghana,
pp. 1–12.
Gomez-Flores, A., Heyes, G.W., Ilyas, S., Kim, H.,
Prediction of grade and recovery in flotation from
physicochemical and operational aspects using machine
learning models. Minerals Engineering, 2022, 183,
107627.
Grömping, U., Relative importance for linear regression in
R: the package relaimpo. Journal of statistical software,
2006, 17(1), 1–27.
Hodouin, D., Methods for automatic control, observation,
and optimization in mineral processing plants. Journal
of Process Control, 2011, 21(2), 211–225.
Kesler, S.E., Simon, A.C., Simon, A.F., Mineral resources,
economics and the environment. 2015, Cambridge
University Press.
Kuipers, K.J.J., van Oers, L.F.C.M., Verboon, M., van der
Voet, E., Assessing environmental implications associ-
ated with global copper demand and supply scenarios
from 2010 to 2050. Global Environmental Change,
2018, 49, 106–115.
Latorre, M., Troncoso, R., Uauy, R., 2019. Chapter
4 -Biological Aspects of Copper, In Clinical and
Translational Perspectives on WILSON DISEASE, eds.
Kerkar, N., Roberts, E.A. Academic Press, pp. 2531.
Lee, Y., Oh, S.-H., Kim, M.W., 1991. The effect of initial
weights on premature saturation in back-propagation
learning, In IJCNN-91-Seattle international joint con-
ference on neural networks. IEEE, pp. 765–770.
Mathe, Z., Harris, M., O’Connor, C., A review of methods
to model the froth phase in non-steady state flotation
systems. Minerals Engineering, 2000, 13(2), 127–140.
Nakhaei, F., Irannajad, M.J.P.P.o.M.P., Comparison
between neural networks and multiple regression
methods in metallurgical performance modeling of flo-
tation column. 2013, 49.
Amankwaa-Kyeremeh, B., Greet, C., Skinner, W.,
Asamoah, R.K., 2021b. Correlating process mineral-
ogy and pulp chemistry for quick ore variability diag-
nosis, ed. International Future Mining Conference
Online, D. Australia Australia Australasian Institute of
Mining and Metallurgy, Australia, pp. 1–10.
Amankwaa-Kyeremeh, B., Greet, C., Zanin, M., Skinner,
W., Asamoah, R.K., 2020a. Predictability of rougher
flotation copper recovery using Gaussian process regres-
sion algorithm, eds. th, U.B.I.M., Mineral Conference
Tarkwa, G.A. Ghana UMaT, Ghana, pp. 1–8.
Amankwaa-Kyeremeh, B., Greet, C., Zanin, M., Skinner,
W., Asamoah, R.K., 2020b. Selecting key predic-
tor parameters for regression modelling using modi-
fied Neighbourhood Component Analysis (NCA)
Algorithm, eds. th, U.B.I.M., Mineral Conference
Tarkwa, G.A. Ghana UMaT, Ghana, pp. 320–325.
Amankwaa-Kyeremeh, B., McCamley, C., Zanin, M.,
Greet, C., Ehrig, K., Asamoah, R.K., Prediction and
Optimisation of Copper Recovery in the Rougher
Flotation Circuit. Minerals, 2024, 14(1), 36.
Amankwaa-Kyeremeh, B., Skinner, W., Asamoah, R.K.,
2021c. Comparative study on rougher copper recov-
ery prediction using selected predictive algorithms,
ed. International Future Mining Conference Online,
D. Australia Australia Australasian Institute of Mining
and Metallurgy, Australia, pp. 1–10.
Amankwaa-Kyeremeh, B., Zhang, J., Zanin, M., Skinner,
W., Asamoah, R.K., Feature selection and Gaussian
process prediction of rougher copper recovery. Minerals
Engineering, 2021d, 170(107041), 1–14.
Arthur, C.K., Temeng, V.A., Ziggah, Y.Y., Novel approach
to predicting blast-induced ground vibration using
Gaussian process regression. Engineering with
Computers, 2020, 36(1), 29–42.
Asamoah, R.K., Baawuah, E., Greet, C., Skinner, W.,
Characterisation of metal debris in grinding and flota-
tion circuits. Minerals Engineering, 2021, 171.
Bhavsar, H., Panchal, M.H., A review on support vector
machine for data classification. International Journal
of Advanced Research in Computer Engineering and
Technology, 2012, 1(10), 185–189.
Breiman, L., Cutler, A., Manual–Setting Up, Using, and
Understanding Random Forests, v 4.0, URL: ftp://ftp.
stat. berkeley. edu/pub/users/breiman. 2003.
Dankwah, J.B., Asamoah, R.K., Zanin, M., Skinner, W.,
Dense liquid flotation: Can coarse particle flotation
performance be enhanced by controlling fluid density?
Minerals Engineering, 2022a, 180, 107513.
Dankwah, J.B., Asamoah, R.K., Zanin, M., Skinner, W.,
Influence of water rate, gas rate, and bed particle size
on bed-level and coarse particle flotation performance.
Minerals Engineering, 2022b, 183, 107622.
Forson, P., Zanin, M., Abaka-Wood, G., Skinner, W.,
Asamoah, R., Flotation of auriferous arsenopyrite from
pyrite using thionocarbamate. Minerals Engineering,
2022, 181, 107524.
Forson, P., Zanin, M., Skinner, W., Asamoah, 2020. A brief
review of auriferous sulphide flotation concentration:.
pyrite and arsenopyrite mineral separation, In UMaT
Biennial International Mining Mineral Conference
Tarkwa, Ghana August. UMaT Ghana, Ghana,
pp. 1–12.
Gomez-Flores, A., Heyes, G.W., Ilyas, S., Kim, H.,
Prediction of grade and recovery in flotation from
physicochemical and operational aspects using machine
learning models. Minerals Engineering, 2022, 183,
107627.
Grömping, U., Relative importance for linear regression in
R: the package relaimpo. Journal of statistical software,
2006, 17(1), 1–27.
Hodouin, D., Methods for automatic control, observation,
and optimization in mineral processing plants. Journal
of Process Control, 2011, 21(2), 211–225.
Kesler, S.E., Simon, A.C., Simon, A.F., Mineral resources,
economics and the environment. 2015, Cambridge
University Press.
Kuipers, K.J.J., van Oers, L.F.C.M., Verboon, M., van der
Voet, E., Assessing environmental implications associ-
ated with global copper demand and supply scenarios
from 2010 to 2050. Global Environmental Change,
2018, 49, 106–115.
Latorre, M., Troncoso, R., Uauy, R., 2019. Chapter
4 -Biological Aspects of Copper, In Clinical and
Translational Perspectives on WILSON DISEASE, eds.
Kerkar, N., Roberts, E.A. Academic Press, pp. 2531.
Lee, Y., Oh, S.-H., Kim, M.W., 1991. The effect of initial
weights on premature saturation in back-propagation
learning, In IJCNN-91-Seattle international joint con-
ference on neural networks. IEEE, pp. 765–770.
Mathe, Z., Harris, M., O’Connor, C., A review of methods
to model the froth phase in non-steady state flotation
systems. Minerals Engineering, 2000, 13(2), 127–140.
Nakhaei, F., Irannajad, M.J.P.P.o.M.P., Comparison
between neural networks and multiple regression
methods in metallurgical performance modeling of flo-
tation column. 2013, 49.