900 XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3
Pu, Y., Szmigiel, A., Chen, J., Apel, D.B., FlotationNet: A
hierarchical deep learning network for froth flotation
recovery prediction. Powder Technology, 2020, 375,
317–326.
Quintanilla, P., Neethling, S.J., Brito-Parada, P.R.,
Modelling for froth flotation control: A review.
Minerals Engineering, 2021, 162, 106718.
Shahbazi, B., Chehreh Chelgani, S., Matin, S.S., Prediction
of froth flotation responses based on various condition-
ing parameters by Random Forest method. Colloids
and Surfaces A: Physicochemical and Engineering
Aspects, 2017, 529, 936–941.
Sverdrup, H.U., Ragnarsdottir, K.V., Koca, D., On mod-
elling the global copper mining rates, market supply,
copper price and the end of copper reserves. Resources,
Conservation and Recycling, 2014, 87, 158–174.
Previous Page Next Page