1996 XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3
Islam, M.T., &Nguyen, A.V. (2021). Effect of particle size
and shape on liquid–solid fluidization in a HydroFloat
cell. Powder Technology, 379, 560–575.
Laskovski, D., Duncan, P., Stevenson, P., Zhou, J., &
Galvin, K. (2006). Segregation of hydraulically sus-
pended particles in inclined channels. Chemical
Engineering Science, 61(22), 7269–7278.
Launder, B.E., &Spalding, D.B. (1983). The numerical
computation of turbulent flows. In Numerical predic-
tion of flow, heat transfer, turbulence and combustion
(pp. 96–116). Elsevier.
Nakamura, H. (1937). La cause de l’acceleration de la
vitesse de sedimentation des suspensions dans les recip-
ients inclines. Keijo Journal of Medicine, 8, 256–296.
Nguyentranlam, G., &Galvin, K. (2001). Particle clas-
sification in the reflux classifier. Minerals Engineering,
14(9), 1081–1091.
Peng, J., Sun, W., Han, H., &Xie, L. (2021). CFD mod-
eling and simulation of the hydrodynamics charac-
teristics of coarse coal particles in a 3D liquid-solid
fluidized bed. Minerals, 11(6), 569.
Peng, J., Sun, W., Xie, L., Han, H., &Xiao, Y. (2022). An
experimental study of pressure drop characteristics and
flow resistance coefficient in a fluidized bed for coal
particle fluidization. Minerals, 12(3), 289.
Peng, Z., Galvin, K., &Doroodchi, E. (2019). Influence of
inclined plates on flow characteristics of a liquid-solid
fluidised bed: A CFD-DEM study. Powder Technology,
343, 170–184.
Rao, A., Curtis, J.S., Hancock, B.C., &Wassgren, C.
(2010). The effect of column diameter and bed height
on minimum fluidization velocity. AIChE journal,
56(9), 2304–2311.
Salem, A., Okoth, G., &Thöming, J. (2011). An approach
to improve the separation of solid–liquid suspensions
in inclined plate settlers: CFD simulation and experi-
mental validation. Water research, 45(11), 3541–3549.
Starrett, J., &Galvin, K. (2023). Application of inclined
channels in the hydrodynamic classification of miner-
als by particle size. Minerals Engineering, 195, 108002.
Sutherland, J., Vassilatos, G., Kubota, H., &Osberg, G.
(1963). The effect of packing on a fluidized bed. AIChE
journal, 9(4), 437–441.
Syed, N., Dickinson, J., Galvin, K., &Moreno-Atanasio,
R. (2018). Continuous, dynamic and steady state
simulation of the reflux classifier using a segregation-
dispersion model. Minerals Engineering, 115, 53–67.
Syed, N., Galvin, K., &Moreno-Atanasio, R. (2019).
Application of a 2D segregation-dispersion model to
describe binary and multi-component size classifica-
tion in a Reflux Classifier. Minerals Engineering, 133,
80–90.
Tang, C., Liu, M., &Li, Y. (2016). Experimental investiga-
tion of hydrodynamics of liquid–solid mini-fluidized
beds. Particuology, 27, 102–109.
Tarpagkou, R., &Pantokratoras, A. (2014). The influence
of lamellar settler in sedimentation tanks for potable
water treatment—A computational fluid dynamic
study. Powder Technology, 268, 139–149.
Tripathy, A., Bagchi, S., Biswal, S., &Meikap, B. (2017).
Study of particle hydrodynamics and misplacement
in liquid–solid fluidized bed separator. Chemical
Engineering Research and Design, 117, 520–532.
Zhou, L., Zhang, L., Bai, L., Shi, W., Li, W., Wang, C.,
&Agarwal, R. (2017). Experimental study and tran-
sient CFD/DEM simulation in a fluidized bed based
on different drag models. RSC Advances, 7(21),
12764–12774.
Previous Page Next Page

Extracted Text (may have errors)

1996 XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3
Islam, M.T., &Nguyen, A.V. (2021). Effect of particle size
and shape on liquid–solid fluidization in a HydroFloat
cell. Powder Technology, 379, 560–575.
Laskovski, D., Duncan, P., Stevenson, P., Zhou, J., &
Galvin, K. (2006). Segregation of hydraulically sus-
pended particles in inclined channels. Chemical
Engineering Science, 61(22), 7269–7278.
Launder, B.E., &Spalding, D.B. (1983). The numerical
computation of turbulent flows. In Numerical predic-
tion of flow, heat transfer, turbulence and combustion
(pp. 96–116). Elsevier.
Nakamura, H. (1937). La cause de l’acceleration de la
vitesse de sedimentation des suspensions dans les recip-
ients inclines. Keijo Journal of Medicine, 8, 256–296.
Nguyentranlam, G., &Galvin, K. (2001). Particle clas-
sification in the reflux classifier. Minerals Engineering,
14(9), 1081–1091.
Peng, J., Sun, W., Han, H., &Xie, L. (2021). CFD mod-
eling and simulation of the hydrodynamics charac-
teristics of coarse coal particles in a 3D liquid-solid
fluidized bed. Minerals, 11(6), 569.
Peng, J., Sun, W., Xie, L., Han, H., &Xiao, Y. (2022). An
experimental study of pressure drop characteristics and
flow resistance coefficient in a fluidized bed for coal
particle fluidization. Minerals, 12(3), 289.
Peng, Z., Galvin, K., &Doroodchi, E. (2019). Influence of
inclined plates on flow characteristics of a liquid-solid
fluidised bed: A CFD-DEM study. Powder Technology,
343, 170–184.
Rao, A., Curtis, J.S., Hancock, B.C., &Wassgren, C.
(2010). The effect of column diameter and bed height
on minimum fluidization velocity. AIChE journal,
56(9), 2304–2311.
Salem, A., Okoth, G., &Thöming, J. (2011). An approach
to improve the separation of solid–liquid suspensions
in inclined plate settlers: CFD simulation and experi-
mental validation. Water research, 45(11), 3541–3549.
Starrett, J., &Galvin, K. (2023). Application of inclined
channels in the hydrodynamic classification of miner-
als by particle size. Minerals Engineering, 195, 108002.
Sutherland, J., Vassilatos, G., Kubota, H., &Osberg, G.
(1963). The effect of packing on a fluidized bed. AIChE
journal, 9(4), 437–441.
Syed, N., Dickinson, J., Galvin, K., &Moreno-Atanasio,
R. (2018). Continuous, dynamic and steady state
simulation of the reflux classifier using a segregation-
dispersion model. Minerals Engineering, 115, 53–67.
Syed, N., Galvin, K., &Moreno-Atanasio, R. (2019).
Application of a 2D segregation-dispersion model to
describe binary and multi-component size classifica-
tion in a Reflux Classifier. Minerals Engineering, 133,
80–90.
Tang, C., Liu, M., &Li, Y. (2016). Experimental investiga-
tion of hydrodynamics of liquid–solid mini-fluidized
beds. Particuology, 27, 102–109.
Tarpagkou, R., &Pantokratoras, A. (2014). The influence
of lamellar settler in sedimentation tanks for potable
water treatment—A computational fluid dynamic
study. Powder Technology, 268, 139–149.
Tripathy, A., Bagchi, S., Biswal, S., &Meikap, B. (2017).
Study of particle hydrodynamics and misplacement
in liquid–solid fluidized bed separator. Chemical
Engineering Research and Design, 117, 520–532.
Zhou, L., Zhang, L., Bai, L., Shi, W., Li, W., Wang, C.,
&Agarwal, R. (2017). Experimental study and tran-
sient CFD/DEM simulation in a fluidized bed based
on different drag models. RSC Advances, 7(21),
12764–12774.

Help

loading