1956 XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3
REFERENCES
[1] J. Pal, ‘Innovative Development on Agglomeration
of Iron Ore Fines and Iron Oxide Wastes’,
Mineral Processing and Extractive Metallurgy
Review, vol. 40, no. 4, pp. 248–264, 2019, doi:
10.1080/08827508.2018.1518222.
[2] N. A. El-Hussiny and M. E. H. Shalabi, ‘A self-
reduced intermediate product from iron and steel
plants waste materials using a briquetting process’,
Powder Technol, vol. 205, no. 1–3, pp. 217–223,
2011, doi: 10.1016/j.powtec.2010.09.017.
[3] J. Xu, N. Wang, M. Chen, and H. Yu, ‘Recycling
of Blast Furnace Flue Dust with In-flight
Reduction Technology: Reduction Behavior
and Kinetic Analysis’, in Minerals, Metals and
Materials Series, Springer, 2020, pp. 365–376. doi:
10.1007/978-3-030-36830-2_35.
[4] A. Yehia and F. H. El-Rahiem, ‘Recovery and utili-
zation of iron and carbon values from blast furnace
flue dust’, Transactions of the Institutions of Mining
and Metallurgy, Section C: Mineral Processing and
Extractive Metallurgy, vol. 114, no. 4, pp. 184–189,
2005, doi: 10.1179/037195505X28519.
[5] B. Das, S. Prakash, P. S. R. Reddy, S. K. Biswal, B.
K. Mohapatra, and V. N. Misra, ‘Effective utiliza-
tion of blast furnace flue dust of integrated steel
plants’, The European Journal of Mineral Processinf and
Environmental Protection, vol. 2, no. 2, pp. 61–68,
2002, [Online]. Available: http://www.ejmpep.com
/das_et al.pdf.
[6] V. Ri et al., ‘) ORWDWLRQ FKDUDFWHU-
LVWLFV RI KLJK DVK R [LGLVHG, QGLDQ’,
pp. 1–10.
[7] X. Gui, Y. Xing, T. Wang, Y. Cao, Z. Miao, and M. Xu,
‘Intensification mechanism of oxidized coal flotation
by using oxygen-containing collector α-furanacrylic
acid’, Powder Technol, vol. 305, pp. 109–116, 2017,
doi: 10.1016/j.powtec.2016.09.058.
[8] M. S. Jena, S. K. Biswal, and M. V. Rudramuniyappa,
‘Study on flotation characteristics of oxidised Indian
high ash sub-bituminous coal’, Int J Miner Process,
vol. 87, no. 1–2, pp. 42–50, 2008, doi: 10.1016/j.
minpro.2008.01.004.
[9] W. Xia, J. Yang, and C. Liang, ‘A short review of
improvement in flotation of low rank/oxidized coals
by pretreatments’, Powder Technol, vol. 237, pp. 1–8,
2013, doi: 10.1016/j.powtec.2013.01.017.
[10] J. Wang, Y. He, Y. Yang, W. Xie, and X. Ling, ‘Research
on quantifying the hydrophilicity of leached coals
by FTIR spectroscopy’, Physicochemical Problems of
Mineral Processing, vol. 53, no. 1, pp. 227–239, 2017,
doi: 10.5277/ppmp170119.
[11] B. Das, S. Prakash, P. S. R. Reddy, and V. N.
Misra, ‘An overview of utilization of slag and
sludge from steel industries’, Resour Conserv Recycl,
vol. 50, no. 1, pp. 40–57, 2007, doi: 10.1016/j.
resconrec.2006.05.008.
[12] S. S. Rath, D. S. Rao, S. K. Tripathy, and S. K.
Biswal, ‘Characterization vis-á-vis utilization of blast
furnace flue dust in the roast reduction of banded
iron ore’, Process Safety and Environmental Protection,
vol. 117, pp. 232–244, 2018, doi: 10.1016/j.
psep.2018.05.007.
[13] D. Xiong, L. Lu, and R. J. Holmes, ‘Developments
in the physical separation of iron ore: Magnetic
separation’, Iron Ore: Mineralogy, Processing and
Environmental Sustainability, pp. 283–307, 2015,
doi: 10.1016/B978-1-78242-156-6.00009-5.
[14] S. K. Tripathy, P. K. Banerjee, N. Suresh, Y. R.
Murthy, and V. Singh, ‘Dry High-Intensity Magnetic
Separation In Mineral Industry—A Review Of Present
Status And Future Prospects’, Mineral Processing and
Extractive Metallurgy Review, vol. 38, no. 6, pp. 339–
365, 2017, doi: 10.1080/08827508.2017.1323743.
[15] M. Dworzanowski, ‘Maximizing the recovery of fine
iron ore using magnetic separation’, J South Afr Inst
Min Metall, vol. 112, no. 3, pp. 197–202, 2012.
[16] Y. Shao, T. J. Veasey, and N. A. Rowson, ‘Wet high
intensity magnetic separation of iron minerals’,
Magnetic and Electrical Separation, vol. 8, no. 1,
pp. 41–51, 1996, doi: 10.1155/1996/34321.
[17] D. N. Shibaeva, A. A. Kompanchenko, and S. V.
Tereschenko, ‘Analysis of the effect of dry magnetic
separation on the process of ferruginous quartzites
disintegration’, Minerals, vol. 11, no. 8, pp. 1–15,
2021, doi: 10.3390/min11080797.
REFERENCES
[1] J. Pal, ‘Innovative Development on Agglomeration
of Iron Ore Fines and Iron Oxide Wastes’,
Mineral Processing and Extractive Metallurgy
Review, vol. 40, no. 4, pp. 248–264, 2019, doi:
10.1080/08827508.2018.1518222.
[2] N. A. El-Hussiny and M. E. H. Shalabi, ‘A self-
reduced intermediate product from iron and steel
plants waste materials using a briquetting process’,
Powder Technol, vol. 205, no. 1–3, pp. 217–223,
2011, doi: 10.1016/j.powtec.2010.09.017.
[3] J. Xu, N. Wang, M. Chen, and H. Yu, ‘Recycling
of Blast Furnace Flue Dust with In-flight
Reduction Technology: Reduction Behavior
and Kinetic Analysis’, in Minerals, Metals and
Materials Series, Springer, 2020, pp. 365–376. doi:
10.1007/978-3-030-36830-2_35.
[4] A. Yehia and F. H. El-Rahiem, ‘Recovery and utili-
zation of iron and carbon values from blast furnace
flue dust’, Transactions of the Institutions of Mining
and Metallurgy, Section C: Mineral Processing and
Extractive Metallurgy, vol. 114, no. 4, pp. 184–189,
2005, doi: 10.1179/037195505X28519.
[5] B. Das, S. Prakash, P. S. R. Reddy, S. K. Biswal, B.
K. Mohapatra, and V. N. Misra, ‘Effective utiliza-
tion of blast furnace flue dust of integrated steel
plants’, The European Journal of Mineral Processinf and
Environmental Protection, vol. 2, no. 2, pp. 61–68,
2002, [Online]. Available: http://www.ejmpep.com
/das_et al.pdf.
[6] V. Ri et al., ‘) ORWDWLRQ FKDUDFWHU-
LVWLFV RI KLJK DVK R [LGLVHG, QGLDQ’,
pp. 1–10.
[7] X. Gui, Y. Xing, T. Wang, Y. Cao, Z. Miao, and M. Xu,
‘Intensification mechanism of oxidized coal flotation
by using oxygen-containing collector α-furanacrylic
acid’, Powder Technol, vol. 305, pp. 109–116, 2017,
doi: 10.1016/j.powtec.2016.09.058.
[8] M. S. Jena, S. K. Biswal, and M. V. Rudramuniyappa,
‘Study on flotation characteristics of oxidised Indian
high ash sub-bituminous coal’, Int J Miner Process,
vol. 87, no. 1–2, pp. 42–50, 2008, doi: 10.1016/j.
minpro.2008.01.004.
[9] W. Xia, J. Yang, and C. Liang, ‘A short review of
improvement in flotation of low rank/oxidized coals
by pretreatments’, Powder Technol, vol. 237, pp. 1–8,
2013, doi: 10.1016/j.powtec.2013.01.017.
[10] J. Wang, Y. He, Y. Yang, W. Xie, and X. Ling, ‘Research
on quantifying the hydrophilicity of leached coals
by FTIR spectroscopy’, Physicochemical Problems of
Mineral Processing, vol. 53, no. 1, pp. 227–239, 2017,
doi: 10.5277/ppmp170119.
[11] B. Das, S. Prakash, P. S. R. Reddy, and V. N.
Misra, ‘An overview of utilization of slag and
sludge from steel industries’, Resour Conserv Recycl,
vol. 50, no. 1, pp. 40–57, 2007, doi: 10.1016/j.
resconrec.2006.05.008.
[12] S. S. Rath, D. S. Rao, S. K. Tripathy, and S. K.
Biswal, ‘Characterization vis-á-vis utilization of blast
furnace flue dust in the roast reduction of banded
iron ore’, Process Safety and Environmental Protection,
vol. 117, pp. 232–244, 2018, doi: 10.1016/j.
psep.2018.05.007.
[13] D. Xiong, L. Lu, and R. J. Holmes, ‘Developments
in the physical separation of iron ore: Magnetic
separation’, Iron Ore: Mineralogy, Processing and
Environmental Sustainability, pp. 283–307, 2015,
doi: 10.1016/B978-1-78242-156-6.00009-5.
[14] S. K. Tripathy, P. K. Banerjee, N. Suresh, Y. R.
Murthy, and V. Singh, ‘Dry High-Intensity Magnetic
Separation In Mineral Industry—A Review Of Present
Status And Future Prospects’, Mineral Processing and
Extractive Metallurgy Review, vol. 38, no. 6, pp. 339–
365, 2017, doi: 10.1080/08827508.2017.1323743.
[15] M. Dworzanowski, ‘Maximizing the recovery of fine
iron ore using magnetic separation’, J South Afr Inst
Min Metall, vol. 112, no. 3, pp. 197–202, 2012.
[16] Y. Shao, T. J. Veasey, and N. A. Rowson, ‘Wet high
intensity magnetic separation of iron minerals’,
Magnetic and Electrical Separation, vol. 8, no. 1,
pp. 41–51, 1996, doi: 10.1155/1996/34321.
[17] D. N. Shibaeva, A. A. Kompanchenko, and S. V.
Tereschenko, ‘Analysis of the effect of dry magnetic
separation on the process of ferruginous quartzites
disintegration’, Minerals, vol. 11, no. 8, pp. 1–15,
2021, doi: 10.3390/min11080797.