XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3 1711
REFERENCES
Aleksenko, S.S., Gumenyuk, A.P., &Mushtakova, S.P.
(2002). Study of the speciation of rhodium (III) in a
hydrochloric acid solution by capillary electrophore-
sis. Journal of Analytical Chemistry, 57, 215–220. doi:
10.1023/A:1014488114371.
Asamoah-Bekoe, Y. (1998). Investigation of the leaching of
the platinum group metal concentrate in hydrochloric acid
solution by chlorine. (Master’s thesis, University of the
Witwatersrand, Johannesburg). Retrieved from wired
space.wits.ac.za/handle/10539/21348.
Bernardis, F.L., Grant, R.A., &Sherrington, D.C. (2005).
A review of methods of separation of the platinum-
group metals through their chloro-complexes. Reactive
&Functional Polymers, 65, 205–217. doi: 10.1016
/j.reactfunctpolym.2005.05.011.
Chagnes, A. (2020). Simulation of solvent extrac-
tion flowsheets by a global model combining
physicochemical and engineering approaches—appli-
cation to cobalt (II) extraction by D2EHPA. sol-
vent extraction and ion exchange, 38(1), 3–13. doi:
10.1080/07366299.2019.1691135.
Crundwell, F.K., Moats, M.S., Ramachandran, V.,
Robinson, T.G., &Davenport, W.G. (2011).Refining
of the Platinum-Group Metals. Extractive Metallurgy of
Nickel, Cobalt, and Platinum-Group Metals, (pp.489–
534). Retrieved from https://app.knovel.com/hot-
link/toc/id:kpEMNCPGMO/extractive-metallurgy/
extractive-metallurgy.
Crundwell, F. (2019). Platinum Group Metals. In R.C.
Dunne, S.K. Kawatra., &C.A Young. SME Mineral
Processing &Extractive Metallurgy Handbook, (pp.1995–
2012). Retrieved from https://app.knovel.com/hotlink
/toc/id:kpSMEMPE1/sme-mineral-processing
/sme-mineral-processing.
Ding, Y., Zheng, H., Zhang, S., Liu, B., Wu, B., &
Jian, Z. (2020). Highly efficient recovery of plati-
num, palladium, and rhodium from spent automo-
tive catalysts via iron melting collection. Resources,
Conservation &Recycling 155, 104644. doi: 10.1016
/j.resconrec.2019.104644.
Firmansyah, M.L., Kubota, F., Yoshida, W., &Goto, M.
(2019). Application of a novel phosphonium-based
ionic liquid to the separation of platinum group met-
als from automobile catalyst leach liquor. Industrial &
Engineering Chemistry Research, 58(9), 3845–3852.
doi: 10.1021/acs.iecr.8b05848.
Gaita, R., &Al-Bazi, S.J. (1995). An Ion Exchange Method
for Selective Separation of Platinum, Palladium
and Rhodium from Solutions obtained by leaching
Automotive Catalytic Converters. Talanta,42 (2),
249–255. doi: 10.1016/0039-9140(94)00246-0.
Galvão, T.L., Kuznetsova, A., Gomes, J.R.,
Zheludkevich, M.L., Tedim, J., &Ferreira, M.G.
(2016). A computational UV–Vis spectroscopic study
of the chemical speciation of 2-mercaptobenzothiazole
corrosion inhibitor in aqueous solution. Theoretical
Chemistry Accounts, 135, 1–11. doi: 10.1007
/s00214-016-1839-3.
Ge, T., He, J.-D., Xu, L., Xiong, Y.-H., Wang, L.,
Zhou, X.-W., Tian, Y.-P., &Zhao, Z. (2023). Recovery
of platinum from spent automotive catalyst based on
hydrometallurgy. Rare Metals, 42(4), 1118–1137. doi:
10.1007/s12598-022-02236-2.
Ghaedi, M., Shokrollahi, A., Niknam, K., Niknam, E.,
Najibi, A., &Soylak, M. (2009). Cloud point extrac-
tion and flame atomic absorption spectrometric
determination of cadmium (II), lead (II), palladium
(II) and silver (I) in environmental samples. Journal
of Hazardous Materials, 168(2–3), 1022–1027. doi:
10.1016/j.jhazmat.2009.02.130.
Goc, K., Kluczka, J., Benke, G., Malarz, J., Pianowska, K.,
&Leszczyńska-Sejda, K. (2021). Application of
ion exchange for recovery of noble metals. Minerals,
11(11), 1188. doi: 10.3390/min11111188.
Han, Q., Huo, Y., Wu, J., He, Y., Yang, X., &Yang, L.
(2017). Determination of ultra-trace rhodium in
water samples by graphite furnace atomic absorp-
tion spectrometry after cloud point extraction using
2-(5-iodo-2-pyridylazo)-5-dimethylaminoaniline as a
chelating agent. Molecules, 22(4), 487. doi: 10.3390/
molecules22040487.
Hong, H.J., Yub, H., Hong, S., Hwang, J.Y., Kimb, S.M.,
Park, M.S., &Jeong, H.S. (2020). Modified tunicate
nanocellulose liquid crystalline fiber as closed loop
for recycling platinum-group metals. Carbohydrate
Polymers, 228 (115424), 1–7. doi: 10.1016
/j.carbpol.2019.115424.
Johnson Matthey. (2020). Pgm Market Report February.
Retrieved from http://www.platinum.matthey.com
/services/market-research/pgm-market-reports.
Johnson Matthey. (2023). Pgm Market Report May.
Retrieved from https://matthey.com/en/products
-and-markets/pgms-and-circularity/pgmmarkets
/pgm-market-reports.
REFERENCES
Aleksenko, S.S., Gumenyuk, A.P., &Mushtakova, S.P.
(2002). Study of the speciation of rhodium (III) in a
hydrochloric acid solution by capillary electrophore-
sis. Journal of Analytical Chemistry, 57, 215–220. doi:
10.1023/A:1014488114371.
Asamoah-Bekoe, Y. (1998). Investigation of the leaching of
the platinum group metal concentrate in hydrochloric acid
solution by chlorine. (Master’s thesis, University of the
Witwatersrand, Johannesburg). Retrieved from wired
space.wits.ac.za/handle/10539/21348.
Bernardis, F.L., Grant, R.A., &Sherrington, D.C. (2005).
A review of methods of separation of the platinum-
group metals through their chloro-complexes. Reactive
&Functional Polymers, 65, 205–217. doi: 10.1016
/j.reactfunctpolym.2005.05.011.
Chagnes, A. (2020). Simulation of solvent extrac-
tion flowsheets by a global model combining
physicochemical and engineering approaches—appli-
cation to cobalt (II) extraction by D2EHPA. sol-
vent extraction and ion exchange, 38(1), 3–13. doi:
10.1080/07366299.2019.1691135.
Crundwell, F.K., Moats, M.S., Ramachandran, V.,
Robinson, T.G., &Davenport, W.G. (2011).Refining
of the Platinum-Group Metals. Extractive Metallurgy of
Nickel, Cobalt, and Platinum-Group Metals, (pp.489–
534). Retrieved from https://app.knovel.com/hot-
link/toc/id:kpEMNCPGMO/extractive-metallurgy/
extractive-metallurgy.
Crundwell, F. (2019). Platinum Group Metals. In R.C.
Dunne, S.K. Kawatra., &C.A Young. SME Mineral
Processing &Extractive Metallurgy Handbook, (pp.1995–
2012). Retrieved from https://app.knovel.com/hotlink
/toc/id:kpSMEMPE1/sme-mineral-processing
/sme-mineral-processing.
Ding, Y., Zheng, H., Zhang, S., Liu, B., Wu, B., &
Jian, Z. (2020). Highly efficient recovery of plati-
num, palladium, and rhodium from spent automo-
tive catalysts via iron melting collection. Resources,
Conservation &Recycling 155, 104644. doi: 10.1016
/j.resconrec.2019.104644.
Firmansyah, M.L., Kubota, F., Yoshida, W., &Goto, M.
(2019). Application of a novel phosphonium-based
ionic liquid to the separation of platinum group met-
als from automobile catalyst leach liquor. Industrial &
Engineering Chemistry Research, 58(9), 3845–3852.
doi: 10.1021/acs.iecr.8b05848.
Gaita, R., &Al-Bazi, S.J. (1995). An Ion Exchange Method
for Selective Separation of Platinum, Palladium
and Rhodium from Solutions obtained by leaching
Automotive Catalytic Converters. Talanta,42 (2),
249–255. doi: 10.1016/0039-9140(94)00246-0.
Galvão, T.L., Kuznetsova, A., Gomes, J.R.,
Zheludkevich, M.L., Tedim, J., &Ferreira, M.G.
(2016). A computational UV–Vis spectroscopic study
of the chemical speciation of 2-mercaptobenzothiazole
corrosion inhibitor in aqueous solution. Theoretical
Chemistry Accounts, 135, 1–11. doi: 10.1007
/s00214-016-1839-3.
Ge, T., He, J.-D., Xu, L., Xiong, Y.-H., Wang, L.,
Zhou, X.-W., Tian, Y.-P., &Zhao, Z. (2023). Recovery
of platinum from spent automotive catalyst based on
hydrometallurgy. Rare Metals, 42(4), 1118–1137. doi:
10.1007/s12598-022-02236-2.
Ghaedi, M., Shokrollahi, A., Niknam, K., Niknam, E.,
Najibi, A., &Soylak, M. (2009). Cloud point extrac-
tion and flame atomic absorption spectrometric
determination of cadmium (II), lead (II), palladium
(II) and silver (I) in environmental samples. Journal
of Hazardous Materials, 168(2–3), 1022–1027. doi:
10.1016/j.jhazmat.2009.02.130.
Goc, K., Kluczka, J., Benke, G., Malarz, J., Pianowska, K.,
&Leszczyńska-Sejda, K. (2021). Application of
ion exchange for recovery of noble metals. Minerals,
11(11), 1188. doi: 10.3390/min11111188.
Han, Q., Huo, Y., Wu, J., He, Y., Yang, X., &Yang, L.
(2017). Determination of ultra-trace rhodium in
water samples by graphite furnace atomic absorp-
tion spectrometry after cloud point extraction using
2-(5-iodo-2-pyridylazo)-5-dimethylaminoaniline as a
chelating agent. Molecules, 22(4), 487. doi: 10.3390/
molecules22040487.
Hong, H.J., Yub, H., Hong, S., Hwang, J.Y., Kimb, S.M.,
Park, M.S., &Jeong, H.S. (2020). Modified tunicate
nanocellulose liquid crystalline fiber as closed loop
for recycling platinum-group metals. Carbohydrate
Polymers, 228 (115424), 1–7. doi: 10.1016
/j.carbpol.2019.115424.
Johnson Matthey. (2020). Pgm Market Report February.
Retrieved from http://www.platinum.matthey.com
/services/market-research/pgm-market-reports.
Johnson Matthey. (2023). Pgm Market Report May.
Retrieved from https://matthey.com/en/products
-and-markets/pgms-and-circularity/pgmmarkets
/pgm-market-reports.