XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3 1671
REFERENCES
Antuñano, N., Cambra, J.F., Arias, P.L, 2019.
Hydrometallurgical processes for Waelz oxide valorisa-
tion—An overview: Process Saf. Environ. Prot., 129,
308–20.
Anon, 1989. Recovery of zinc from EAF dust by the Waelz
process. Steel Times 217, 194–195.
Binnemans, K., Jones, P.T., Fernández, Á.M., Torres, V.M.,
2020. Hydrometallurgical Processes for the Recovery
of Metals from Steel Industry By-Products: A Critical
Review. J. Sustain. Metall., 6, 505–40.
Chairaksa, R., Inoue, Y., Umeda, N., Itoh, S., Nagasaka,
T., 2015. New pyrometallurgical process of EAF dust
treatment with CaO addition, Int. Journ. Min. Metall.
Mater. 22, 788.
Chairaksa, R., Maruyama, K., Miki, T., Nagasaka, T., 2016.
Hydrometallurgy 159, 120–125.
Da Silva, M.C., Bernardes, A.M., Bergmann, C.P., Tenório,
J.A.S., Espinosa, D.C.R., 2008. Characterisation of
electric arc furnace dust generated during plain car-
bon steel production, Ironmaking &Steelmaking 35,
315–320.
De Buzin, P.J.W.K., Heck, N.C., Vilela, A.C.F., 2017. EAF
dust: An overview on the influences of physical, chemi-
cal, and mineral features on its recycling and waste
incorporation routes, J. Mat. Res. Tech. 6, 194–202.
European Agency for Safety and Health at Work, 2006.
Regulation (EC) no. (1907/2006)—Registration,
Evaluation, Authorisation and Restriction of Chemicals
(REACH). https://osha.europa.eu/en/legislation
/directives/regulation-ec-no-1907-2006-of-the
-european-parliament-and-of-the-council.
Gamutan, J., Koide, S., Sasaki, Y., Nagasaka, T., 2024.
Selective dissolution and kinetics of leaching zinc from
lime treated electric arc furnace dust by alkaline media.
Journal of Environmental Chemical Engineering 12,
111789.
Han, Z., Holappa, L., 2003. Bubble bursting phenomenon
in Gas/Metal/Slag systems. Metall. Mater. Trans. B 34,
525–532.
Havlik, T., Souza, B.V., Bernardes, A.M., Schneider,
I.A.H., Miskufova, A., 2006. Hydrometallurgical pro-
cessing of carbon steel EAF dust. J. Hazard. Mater.,
135, 311–318.
International Energy Agency, 2020. Iron and Steel
Technology Roadmap Towards More Sustainable
Steelmaking, 103. Available at https://www.iea.org
/reports/iron-and-steel-technology-roadmap
Itoh, S., Tsubone, A., Matsubae, K., Nakajima, K.,
Nagasaka, T., 2008. New EAF Dust Treatment Process
with the Aid of Strong Magnetic Field, ISIJ Int. 48,
1339–1344.
Langová, Š. and Matýsek, D., 2010. Zinc recovery from
steel-making wastes by acid pressure leaching and hema-
tite precipitation. Hydrometallurgy, 101, 171–173.
Levenspiel, O., 1999. Chemical Reaction Engineering, 3rd
ed. New York, USA: John Wiley &Sons.
Nakajima, K., Matsubae-Yokoyama, K., Nakamura, S.,
Itoh, S., Nagasaka, T., 2008. Substance flow analysis
of zinc associated with iron and steel cycle in Japan,
and environmental assessment of EAF dust recycling
process, ISIJ Int. 48, 1478–1483.
Nakayama, T., Taniishi, H., 2011. Dust recycling technol-
ogy for electric arc furnace using RHF. Nippon. Steel
Eng. Tech. Rev. 2, 25–29.
Nakayama, M., 2012. EAF dust treatment for high metal
recovery. SEAISI Q. J. 41, 22–26.
Nagasaka, T., Itoh, S., Yokoyama, K., Nakajima, K.,
Japanese Patent 5137110.
Pickles, C.A., 2009. Thermodynamic analysis of the selec-
tive chlorination of electric arc furnace dust. J. Hazard.
Mater., 166, 1030–1042.
Strohmeier, G., Bonestell, J.E., 1996. Steelworks residues
and the Waelz kiln treatment of electric arc furnace
dust. Iron Steel Eng. 73, 4.
Tsubone, A., Momiyama, T., Inoue, M., Chairaksa, R.,
Matsubae, K., Miki, T., Nagasaka, T., 2012. Dust
injection technology for reducing dust treatment bur-
den. Iron Steel Technol. 9, 184–193.
Tsutsumi, H., Yoshida, S., Tetsumoto, M., 2010. Features of
FASTMET ® process. Kobelco Technol. Rev. 20, 85–92.
United States Environmental Protection Agency, 1991. Land
Disposal Restrictions for Electric Arc Furnace Dust
(K061)—Federal Register Notice, August 19, 1991.
https://www.epa.gov/rcra/land-disposal-restrictions
-electric-arc-furnace-dust-k061-federal-register-notice
-august-19.
Wang, J., Zhang, Y., Cui, K., Fu, T., Gao, J., Hussain, S.,
AlGarni, T.S., 2021. Pyrometallurgical recovery of zinc
and valuable metals from electric arc furnace dust—A
review. J. Cleaner Prod. 298, 126788.
World Steel Association, 2020. 2020 World steel in fig-
ures. Available at https://worldsteel.org/wp-content
/uploads/2020-World-Steel-in-Figures.pdf
Youcai, Z., Stanforth, R., 2000b. Integrated hydrometal-
lurgical process for production of zinc from electric
arc furnace dust in alkaline medium. J. Hazard. Mater.
B80, 223–240.
Previous Page Next Page

Extracted Text (may have errors)

XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3 1671
REFERENCES
Antuñano, N., Cambra, J.F., Arias, P.L, 2019.
Hydrometallurgical processes for Waelz oxide valorisa-
tion—An overview: Process Saf. Environ. Prot., 129,
308–20.
Anon, 1989. Recovery of zinc from EAF dust by the Waelz
process. Steel Times 217, 194–195.
Binnemans, K., Jones, P.T., Fernández, Á.M., Torres, V.M.,
2020. Hydrometallurgical Processes for the Recovery
of Metals from Steel Industry By-Products: A Critical
Review. J. Sustain. Metall., 6, 505–40.
Chairaksa, R., Inoue, Y., Umeda, N., Itoh, S., Nagasaka,
T., 2015. New pyrometallurgical process of EAF dust
treatment with CaO addition, Int. Journ. Min. Metall.
Mater. 22, 788.
Chairaksa, R., Maruyama, K., Miki, T., Nagasaka, T., 2016.
Hydrometallurgy 159, 120–125.
Da Silva, M.C., Bernardes, A.M., Bergmann, C.P., Tenório,
J.A.S., Espinosa, D.C.R., 2008. Characterisation of
electric arc furnace dust generated during plain car-
bon steel production, Ironmaking &Steelmaking 35,
315–320.
De Buzin, P.J.W.K., Heck, N.C., Vilela, A.C.F., 2017. EAF
dust: An overview on the influences of physical, chemi-
cal, and mineral features on its recycling and waste
incorporation routes, J. Mat. Res. Tech. 6, 194–202.
European Agency for Safety and Health at Work, 2006.
Regulation (EC) no. (1907/2006)—Registration,
Evaluation, Authorisation and Restriction of Chemicals
(REACH). https://osha.europa.eu/en/legislation
/directives/regulation-ec-no-1907-2006-of-the
-european-parliament-and-of-the-council.
Gamutan, J., Koide, S., Sasaki, Y., Nagasaka, T., 2024.
Selective dissolution and kinetics of leaching zinc from
lime treated electric arc furnace dust by alkaline media.
Journal of Environmental Chemical Engineering 12,
111789.
Han, Z., Holappa, L., 2003. Bubble bursting phenomenon
in Gas/Metal/Slag systems. Metall. Mater. Trans. B 34,
525–532.
Havlik, T., Souza, B.V., Bernardes, A.M., Schneider,
I.A.H., Miskufova, A., 2006. Hydrometallurgical pro-
cessing of carbon steel EAF dust. J. Hazard. Mater.,
135, 311–318.
International Energy Agency, 2020. Iron and Steel
Technology Roadmap Towards More Sustainable
Steelmaking, 103. Available at https://www.iea.org
/reports/iron-and-steel-technology-roadmap
Itoh, S., Tsubone, A., Matsubae, K., Nakajima, K.,
Nagasaka, T., 2008. New EAF Dust Treatment Process
with the Aid of Strong Magnetic Field, ISIJ Int. 48,
1339–1344.
Langová, Š. and Matýsek, D., 2010. Zinc recovery from
steel-making wastes by acid pressure leaching and hema-
tite precipitation. Hydrometallurgy, 101, 171–173.
Levenspiel, O., 1999. Chemical Reaction Engineering, 3rd
ed. New York, USA: John Wiley &Sons.
Nakajima, K., Matsubae-Yokoyama, K., Nakamura, S.,
Itoh, S., Nagasaka, T., 2008. Substance flow analysis
of zinc associated with iron and steel cycle in Japan,
and environmental assessment of EAF dust recycling
process, ISIJ Int. 48, 1478–1483.
Nakayama, T., Taniishi, H., 2011. Dust recycling technol-
ogy for electric arc furnace using RHF. Nippon. Steel
Eng. Tech. Rev. 2, 25–29.
Nakayama, M., 2012. EAF dust treatment for high metal
recovery. SEAISI Q. J. 41, 22–26.
Nagasaka, T., Itoh, S., Yokoyama, K., Nakajima, K.,
Japanese Patent 5137110.
Pickles, C.A., 2009. Thermodynamic analysis of the selec-
tive chlorination of electric arc furnace dust. J. Hazard.
Mater., 166, 1030–1042.
Strohmeier, G., Bonestell, J.E., 1996. Steelworks residues
and the Waelz kiln treatment of electric arc furnace
dust. Iron Steel Eng. 73, 4.
Tsubone, A., Momiyama, T., Inoue, M., Chairaksa, R.,
Matsubae, K., Miki, T., Nagasaka, T., 2012. Dust
injection technology for reducing dust treatment bur-
den. Iron Steel Technol. 9, 184–193.
Tsutsumi, H., Yoshida, S., Tetsumoto, M., 2010. Features of
FASTMET ® process. Kobelco Technol. Rev. 20, 85–92.
United States Environmental Protection Agency, 1991. Land
Disposal Restrictions for Electric Arc Furnace Dust
(K061)—Federal Register Notice, August 19, 1991.
https://www.epa.gov/rcra/land-disposal-restrictions
-electric-arc-furnace-dust-k061-federal-register-notice
-august-19.
Wang, J., Zhang, Y., Cui, K., Fu, T., Gao, J., Hussain, S.,
AlGarni, T.S., 2021. Pyrometallurgical recovery of zinc
and valuable metals from electric arc furnace dust—A
review. J. Cleaner Prod. 298, 126788.
World Steel Association, 2020. 2020 World steel in fig-
ures. Available at https://worldsteel.org/wp-content
/uploads/2020-World-Steel-in-Figures.pdf
Youcai, Z., Stanforth, R., 2000b. Integrated hydrometal-
lurgical process for production of zinc from electric
arc furnace dust in alkaline medium. J. Hazard. Mater.
B80, 223–240.

Help

loading