9
[6] L. Castro, M. L. Blázquez, F. González, and J. A.
Muñoz, “Bioleaching of phosphate minerals using
aspergillus niger: Recovery of copper and rare earth
elements,” Metals (Basel), vol. 10, pp. 1–13, Jul.
2020, DOI: 10.3390/met10070978.
[7] F. J. Alguacil, “Utilizing Deep Eutectic Solvents in
the Recycle, Recovery, Purification and Miscellaneous
Uses of Rare Earth Elements,” Mar. 2024,
Multidisciplinary Digital Publishing Institute (MDPI).
DOI: 10.3390/molecules29061356.
[8] U. States Department of Energy, “Critical Materials
Rare Earths Supply Chain: A Situational White
Paper,” 2020.
[9] G. Inman, I. C. Nlebedim, and D. Prodius,
“Application of Ionic Liquids for the Recycling and
Recovery of Technologically Critical and Valuable
Metals,” Jan. 01, 2022, MDPI. DOI: 10.3390
/en15020628.
[10] M. Irina et al., “Electrochemical leaching of rare-
earth elements from spent NdFeB magnets,” 2020,
DOI: 10.1016/j.hydromet.2020.105264.
[11] J. Z. Wang, Y. C. Tang, and Y. H. Shen, “Leaching
of Sm, Co, Fe, and Cu from Spent SmCo Magnets
Using Organic Acid,” Metals (Basel), vol. 13, no. 2,
Feb. 2023, DOI: 10.3390/met13020233.
[12] F. J. Alguacil and J. I. Robla, “Recent Work on the
Recovery of Rare Earths Using Ionic Liquids and Deep
Eutectic Solvents,” Oct. 01, 2023, Multidisciplinary
Digital Publishing Institute (MDPI). DOI: 10.3390
/min13101288.
[13] C. K. Gupta and N. (Nagaiyar) Krishnamurthy,
Extractive metallurgy of rare earths. CRC Press, 2005.
[14] X. Li, Z. Li, M. Orefice, and K. Binnemans, “Metal
Recovery from Spent Samarium-Cobalt Magnets
Using a Trichloride Ionic Liquid,” ACS Sustain Chem
Eng, vol. 7, no. 2, pp. 2578–2584, Jan. 2019, DOI:
10.1021/acssuschemeng.8b05604.
[15] M. Rezaee et al., “Eco-friendly recovery of base and
precious metals from waste printed circuit boards
by step-wise glycine leaching: Process optimization,
kinetics modeling, and comparative life cycle assess-
ment,” J Clean Prod, vol. 389, Feb. 2023, DOI:
10.1016/j.jclepro.2023.136016.
[16] G. Khodadadmahmoudi et al., “Green extraction of
nickel and valuable metals from pyrrhotite samples
with different crystallographic structures through aci-
dophilic bioleaching,” J Environ Manage, vol. 317,
Sep. 2022, DOI: 10.1016/j.jenvman.2022.115394.
[17] E. L. Smith, A. P. Abbott, and K. S. Ryder, “Deep
Eutectic Solvents (DESs) and Their Applications,”
Chem Rev, vol. 114, no. 21, pp. 11060–11082,
Nov. 2014, DOI: 10.1021/CR300162P/ASSET
/IMAGES/LARGE/CR-2012-00162P_0004.JPEG.
[18] G. R. T. Jenkin et al., “The application of deep eutec-
tic solvent ionic liquids for environmentally-friendly
dissolution and recovery of precious metals,” Miner
Eng, vol. 87, pp. 18–24, Mar. 2016, DOI: 10.1016
/j.mineng.2015.09.026.
[19] Q. Zhang, K. De Oliveira Vigier, S. Royer, and F.
Jérôme, “Deep eutectic solvents: syntheses, proper-
ties and applications,” Chem Soc Rev, vol. 41, no.
21, pp. 7108–7146, Oct. 2012, DOI: 10.1039
/C2CS35178A.
[20] A. P. Abbott, G. Capper, D. L. Davies, H. L. Munro,
R. K. Rasheed, and V. Tambyrajah, “Preparation of
novel, moisture-stable, Lewis-acidic ionic liquids
containing quaternary ammonium salts with func-
tional side chains,” Chemical Communications, vol. 1,
no. 19, pp. 2010–2011, Oct. 2001, DOI: 10.1039
/B106357J.
[21] E. L. Smith, A. P. Abbott, and K. S. Ryder, “Deep
Eutectic Solvents (DESs) and Their Applications,”
Nov. 2014, American Chemical Society. DOI:
10.1021/cr300162p.
[22] A. P. Abbott, G. Capper, D. L. Davies, R. K.
Rasheed, and V. Tambyrajah, “Novel solvent prop-
erties of choline chloride/urea mixtures,” Chemical
Communications, no. 1, pp. 70–71, 2003, DOI:
10.1039/b210714g.
[23] A. P. Abbott, G. Capper, D. L. Davies, K. J. Mckenzie,
and S. U. Obi, “Solubility of Metal Oxides in Deep
Eutectic Solvents Based on Choline Chloride,” 2006,
DOI: 10.1021/je060038c.
[24] Z. Yuan, H. Liu, W. F. Yong, Q. She, and J. Esteban,
“Status and advances of deep eutectic solvents for
metal separation and recovery,” Green Chemistry,
vol. 24, no. 5, pp. 1895–1929, Mar. 2022, DOI:
10.1039/D1GC03851F.
[25] Q. Zhang, K. De Oliveira Vigier, S. Royer, and F.
Jérôme, “Deep eutectic solvents: Syntheses, properties
and applications,” Chem Soc Rev, vol. 41, pp. 7108–
7146, Oct. 2012, DOI: 10.1039/c2cs35178a.
[26] A. P. Abbott, R. C. Harris, and K. S. Ryder,
“Application of hole theory to define ionic liquids by
their transport properties.,” J Phys Chem B, vol. 111,
pp. 4910–3, May 2007, DOI: 10.1021/jp0671998.
[6] L. Castro, M. L. Blázquez, F. González, and J. A.
Muñoz, “Bioleaching of phosphate minerals using
aspergillus niger: Recovery of copper and rare earth
elements,” Metals (Basel), vol. 10, pp. 1–13, Jul.
2020, DOI: 10.3390/met10070978.
[7] F. J. Alguacil, “Utilizing Deep Eutectic Solvents in
the Recycle, Recovery, Purification and Miscellaneous
Uses of Rare Earth Elements,” Mar. 2024,
Multidisciplinary Digital Publishing Institute (MDPI).
DOI: 10.3390/molecules29061356.
[8] U. States Department of Energy, “Critical Materials
Rare Earths Supply Chain: A Situational White
Paper,” 2020.
[9] G. Inman, I. C. Nlebedim, and D. Prodius,
“Application of Ionic Liquids for the Recycling and
Recovery of Technologically Critical and Valuable
Metals,” Jan. 01, 2022, MDPI. DOI: 10.3390
/en15020628.
[10] M. Irina et al., “Electrochemical leaching of rare-
earth elements from spent NdFeB magnets,” 2020,
DOI: 10.1016/j.hydromet.2020.105264.
[11] J. Z. Wang, Y. C. Tang, and Y. H. Shen, “Leaching
of Sm, Co, Fe, and Cu from Spent SmCo Magnets
Using Organic Acid,” Metals (Basel), vol. 13, no. 2,
Feb. 2023, DOI: 10.3390/met13020233.
[12] F. J. Alguacil and J. I. Robla, “Recent Work on the
Recovery of Rare Earths Using Ionic Liquids and Deep
Eutectic Solvents,” Oct. 01, 2023, Multidisciplinary
Digital Publishing Institute (MDPI). DOI: 10.3390
/min13101288.
[13] C. K. Gupta and N. (Nagaiyar) Krishnamurthy,
Extractive metallurgy of rare earths. CRC Press, 2005.
[14] X. Li, Z. Li, M. Orefice, and K. Binnemans, “Metal
Recovery from Spent Samarium-Cobalt Magnets
Using a Trichloride Ionic Liquid,” ACS Sustain Chem
Eng, vol. 7, no. 2, pp. 2578–2584, Jan. 2019, DOI:
10.1021/acssuschemeng.8b05604.
[15] M. Rezaee et al., “Eco-friendly recovery of base and
precious metals from waste printed circuit boards
by step-wise glycine leaching: Process optimization,
kinetics modeling, and comparative life cycle assess-
ment,” J Clean Prod, vol. 389, Feb. 2023, DOI:
10.1016/j.jclepro.2023.136016.
[16] G. Khodadadmahmoudi et al., “Green extraction of
nickel and valuable metals from pyrrhotite samples
with different crystallographic structures through aci-
dophilic bioleaching,” J Environ Manage, vol. 317,
Sep. 2022, DOI: 10.1016/j.jenvman.2022.115394.
[17] E. L. Smith, A. P. Abbott, and K. S. Ryder, “Deep
Eutectic Solvents (DESs) and Their Applications,”
Chem Rev, vol. 114, no. 21, pp. 11060–11082,
Nov. 2014, DOI: 10.1021/CR300162P/ASSET
/IMAGES/LARGE/CR-2012-00162P_0004.JPEG.
[18] G. R. T. Jenkin et al., “The application of deep eutec-
tic solvent ionic liquids for environmentally-friendly
dissolution and recovery of precious metals,” Miner
Eng, vol. 87, pp. 18–24, Mar. 2016, DOI: 10.1016
/j.mineng.2015.09.026.
[19] Q. Zhang, K. De Oliveira Vigier, S. Royer, and F.
Jérôme, “Deep eutectic solvents: syntheses, proper-
ties and applications,” Chem Soc Rev, vol. 41, no.
21, pp. 7108–7146, Oct. 2012, DOI: 10.1039
/C2CS35178A.
[20] A. P. Abbott, G. Capper, D. L. Davies, H. L. Munro,
R. K. Rasheed, and V. Tambyrajah, “Preparation of
novel, moisture-stable, Lewis-acidic ionic liquids
containing quaternary ammonium salts with func-
tional side chains,” Chemical Communications, vol. 1,
no. 19, pp. 2010–2011, Oct. 2001, DOI: 10.1039
/B106357J.
[21] E. L. Smith, A. P. Abbott, and K. S. Ryder, “Deep
Eutectic Solvents (DESs) and Their Applications,”
Nov. 2014, American Chemical Society. DOI:
10.1021/cr300162p.
[22] A. P. Abbott, G. Capper, D. L. Davies, R. K.
Rasheed, and V. Tambyrajah, “Novel solvent prop-
erties of choline chloride/urea mixtures,” Chemical
Communications, no. 1, pp. 70–71, 2003, DOI:
10.1039/b210714g.
[23] A. P. Abbott, G. Capper, D. L. Davies, K. J. Mckenzie,
and S. U. Obi, “Solubility of Metal Oxides in Deep
Eutectic Solvents Based on Choline Chloride,” 2006,
DOI: 10.1021/je060038c.
[24] Z. Yuan, H. Liu, W. F. Yong, Q. She, and J. Esteban,
“Status and advances of deep eutectic solvents for
metal separation and recovery,” Green Chemistry,
vol. 24, no. 5, pp. 1895–1929, Mar. 2022, DOI:
10.1039/D1GC03851F.
[25] Q. Zhang, K. De Oliveira Vigier, S. Royer, and F.
Jérôme, “Deep eutectic solvents: Syntheses, properties
and applications,” Chem Soc Rev, vol. 41, pp. 7108–
7146, Oct. 2012, DOI: 10.1039/c2cs35178a.
[26] A. P. Abbott, R. C. Harris, and K. S. Ryder,
“Application of hole theory to define ionic liquids by
their transport properties.,” J Phys Chem B, vol. 111,
pp. 4910–3, May 2007, DOI: 10.1021/jp0671998.