360 XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3
Lomax, B.A., Conti, M., Khan, N., Bennett, N.S.,
Ganin, A.Y., &Symes, M.D. (2020). Proving the
viability of an electrochemical process for the simul-
taneous extraction of oxygen and production of metal
alloys from lunar regolith. Planetary and Space Science,
180, 104748. doi: 10.1016/j.pss.2019.104748.
Mitchell, K., Urade, S., Kershaw, A., Chu, P., &Jin, Y.
(2023). 3D printing of conical centrifuge system for
mineral particle separation. Separation and Purification
Technology, 306. doi: 10.1016/j.seppur.2022.122567.
Rasera, J.N., Cilliers, J.J., Lamamy, J.A., &Hadler, K.
(2020). The beneficiation of lunar regolith for space
resource utilisation: A review. In Planetary and Space
Science (Vol. 186). Elsevier Ltd. doi: 10.1016/j.pss
.2020.104879.
Sanders, G.B., &Larson, W.E. (2013). Progress Made
in Lunar In Situ Resource Utilization under NASA’s
Exploration Technology and Development Program.
Journal of Aerospace Engineering, 26(1), 5–17. doi:
10.1061/(ASCE)AS.1943-5525.0000208.
Schwandt, C., Hamilton, J.A., Fray, D.J., &Crawford, I.A.
(2012). The production of oxygen and metal from
lunar regolith. Planetary and Space Science, 74(1),
49–56. doi: 10.1016/j.pss.2012.06.011.
Wang, R., Qiao, G., &Song, G. (2023). Additive man-
ufacturing by laser powder bed fusion and ther-
mal post-treatment of the lunar-regolith-based
glass-ceramics for in-situ resource utilization.
Construction and Building Materials, 392. doi: 10.1016
/j.conbuildmat.2023.132051.
Warren, P., Raju, N., Ebrahimi, H., Krsmanovic, M.,
Raghavan, S., Kapat, J., &Ghosh, R. (2022). Effect of
sintering temperature on microstructure and mechani-
cal properties of molded Martian and Lunar regolith.
Ceramics International, 48(23), 35825–35833. doi:
10.1016/j.ceramint.2022.07.329.
Wills, B.A., &Finch, J.A. (2015). Wills’ Mineral
Processing Technology (8th ed.). Elsevier. doi: 10.1016
/C2010-0-65478-2.
Lomax, B.A., Conti, M., Khan, N., Bennett, N.S.,
Ganin, A.Y., &Symes, M.D. (2020). Proving the
viability of an electrochemical process for the simul-
taneous extraction of oxygen and production of metal
alloys from lunar regolith. Planetary and Space Science,
180, 104748. doi: 10.1016/j.pss.2019.104748.
Mitchell, K., Urade, S., Kershaw, A., Chu, P., &Jin, Y.
(2023). 3D printing of conical centrifuge system for
mineral particle separation. Separation and Purification
Technology, 306. doi: 10.1016/j.seppur.2022.122567.
Rasera, J.N., Cilliers, J.J., Lamamy, J.A., &Hadler, K.
(2020). The beneficiation of lunar regolith for space
resource utilisation: A review. In Planetary and Space
Science (Vol. 186). Elsevier Ltd. doi: 10.1016/j.pss
.2020.104879.
Sanders, G.B., &Larson, W.E. (2013). Progress Made
in Lunar In Situ Resource Utilization under NASA’s
Exploration Technology and Development Program.
Journal of Aerospace Engineering, 26(1), 5–17. doi:
10.1061/(ASCE)AS.1943-5525.0000208.
Schwandt, C., Hamilton, J.A., Fray, D.J., &Crawford, I.A.
(2012). The production of oxygen and metal from
lunar regolith. Planetary and Space Science, 74(1),
49–56. doi: 10.1016/j.pss.2012.06.011.
Wang, R., Qiao, G., &Song, G. (2023). Additive man-
ufacturing by laser powder bed fusion and ther-
mal post-treatment of the lunar-regolith-based
glass-ceramics for in-situ resource utilization.
Construction and Building Materials, 392. doi: 10.1016
/j.conbuildmat.2023.132051.
Warren, P., Raju, N., Ebrahimi, H., Krsmanovic, M.,
Raghavan, S., Kapat, J., &Ghosh, R. (2022). Effect of
sintering temperature on microstructure and mechani-
cal properties of molded Martian and Lunar regolith.
Ceramics International, 48(23), 35825–35833. doi:
10.1016/j.ceramint.2022.07.329.
Wills, B.A., &Finch, J.A. (2015). Wills’ Mineral
Processing Technology (8th ed.). Elsevier. doi: 10.1016
/C2010-0-65478-2.