XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3 359
Furthermore, acceptable separation performance must be
accepted, in a trade-off with system complexity.
Here, we demonstrate the use of a novel centrifugal
size separator suitable for the lunar environment to sepa-
rate coarse (+1 mm particles). Lunar highland simulant
with added large anorthosite particles were tested on a 3D
printed system, in which centrifugal forces were used to
separate the particles by size. Preliminary results showed
that the coarse particles were collected nearest to the cone,
while finer particles travelled around the cone. This demon-
strates the potential of the system. An acceptable separation
performance must, however, be established in the absence
of guidelines from downstream user of the regolith.
ACKNOWLEDGMENTS
This research is funded by the Luxembourg National
Research Fund (FNR) PEARL Programme P21/
MS/15473458.
REFERENCES
Altun, A.A., Ertl, F., Marechal, M., Makaya, A.,
Sgambati, A., &Schwentenwein, M. (2021). Additive
manufacturing of lunar regolith structures. Open
Ceramics, 5. doi: 10.1016/j.oceram.2021.100058.
Baasch, J., Windisch, L., Koch, F., Linke, S., Stoll, E., &
Schilde, C. (2021). Regolith as substitute mold material
for aluminum casting on the Moon. Acta Astronautica,
182, 1–12. doi: 10.1016/j.actaastro.2021.01.045.
Berggren, M., Zubrin, R., Jonscher, P., &Kilgore, J.
(2011, January 4). Lunar Soil Particle Separator.
49th AIAA Aerospace Sciences Meeting Including the
New Horizons Forum and Aerospace Exposition. doi:
10.2514/6.2011-436.
Cannon, K.M., &Britt, D.T. (2020). A geologic model
for lunar ice deposits at mining scales. Icarus, 347,
113778. doi: 10.1016/j.icarus.2020.113778.
Carrier, W.D., Olhoeft, G.R., &Mendell, W. (1991).
Physical Properties of the Lunar Surface. In G.H.
Heiken, D.T. Vaniman, &B.M. French (Eds.), Lunar
Sourcebook: A User’s Guide to the Moon (pp. 475–594).
Cambridge University Press. doi: 10.1038/186826a0.
Cilliers, J.J., Rasera, J.N., &Hadler, K. (2020). Estimating
the scale of Space Resource Utilisation (SRU) opera-
tions to satisfy lunar oxygen demand. Planetary and
Space Science, 180, 104749. doi: 10.1016/j.pss.2019
.104749.
Crawford, I.A. (2015). Lunar resources: A review.
Progress in Physical Geography, 39(2), 137–167. doi:
10.1177/0309133314567585.
Fateri, M., Pitikaris, S., &Sperl, M. (2019). Investigation
on Wetting and Melting Behavior of Lunar Regolith
Simulant for Additive Manufacturing Application.
Microgravity Science and Technology, 1(2), 161–167.
doi: 10.1007/s12217-019-9674-5.
Ginés-Palomares, J.C., Fateri, M., Kalhöfer, E., Schubert, T.,
Meyer, L., Kolsch, N., Brandić Lipińska, M.,
Davenport, R., Imhof, B., Waclavicek, R., Sperl, M.,
Makaya, A., &Günster, J. (2023). Laser melting man-
ufacturing of large elements of lunar regolith simulant
for paving on the Moon. Scientific Reports, 13(1). doi:
10.1038/s41598-023-42008-1.
Goulas, A., Binner, J.G.P., Harris, R.A., &Friel, R.J.
(2017). Assessing extraterrestrial regolith material sim-
ulants for in-situ resource utilisation based 3D print-
ing. Applied Materials Today, 6, 54–61. doi: 10.1016
/j.apmt.2016.11.004.
Heiken, G.H., Vaniman, D.T., &French, B.M. (Eds.).
(1991). Lunar Sourcebook: A User’s Guide to the Moon.
Cambridge University Press.
Kalapodis, N., Kampas, G., &Ktenidou, O.-J. (2020). A
review towards the design of extraterrestrial structures:
From regolith to human outposts. Acta Astronautica,
175, 540–569. doi: 10.1016/j.actaastro.2020.05.038.
Kornuta, D., Abbud-Madrid, A., Atkinson, J., Barr, J.,
Barnhard, G., Bienhoff, D., Blair, B., Clark, V.,
Cyrus, J., DeWitt, B., Dreyer, C., Finger, B., Goff, J.,
Ho, K., Kelsey, L., Keravala, J., Kutter, B., Metzger, P.,
Montgomery, L., Zhu, G. (2019). Commercial
lunar propellant architecture: A collaborative study
of lunar propellant production. REACH, 13, 100026.
doi: 10.1016/j.reach.2019.100026.
Lee, K.A., Oryshchyn, L., Paz, A., Reddington, M., &
Simon, T.M. (2013). The ROxygen Project: Outpost-
Scale Lunar Oxygen Production System Development
at Johnson Space Center. Journal of.
Aerospace Engineering, 26(1), 67–73. doi: 10.1061/(ASCE)
AS.1943-5525.0000230.
Lee, T.S., Lee, J., &Ann, K.Y. (2015). Manufacture of
polymeric concrete on the Moon. Acta Astronautica,
114, 60–64. doi: 10.1016/j.actaastro.2015.04.004.
Lim, S., Bowen, J., Degli-Alessandrini, G., Anand, M.,
Cowley, A., &Levin Prabhu, V. (2021). Investigating
the microwave heating behaviour of lunar soil simulant
JSC-1A at different input powers. Scientific Reports,
11(1), 1–16. doi: 10.1038/s41598-021-81691-w.
Previous Page Next Page