3182 XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3
Vanderbruggen, A., Sygusch, J., Rudolph, M., &Serna-
Guerrero, R. (2021). A contribution to understand-
ing the flotation behavior of lithium metal oxides
and spheroidized graphite for lithium-ion battery
recycling. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 626, 127111. doi: 10.1016/j.
colsurfa.2021.127111.
Verdugo, L., Zhang, L., Saito, K., Bruckard, W.,
Menacho, J., &Hoadley, A. (2022). Flotation
behavior of the most common electrode materials
in lithium ion batteries. Separation and Purification
Technology, 301(July), 121885. doi: 10.1016/j.seppur
.2022.121885.
Xiao, J., Li, J., &Xu, Z. (2017). Recycling metals from
lithium ion battery by mechanical separation and vac-
uum metallurgy. Journal of Hazardous Materials, 338,
124–131. doi: 10.1016/j.jhazmat.2017.05.024.
Yu, J., He, Y., Ge, Z., Li, H., Xie, W., &Wang, S.
(2018). A promising physical method for recov-
ery of LiCoO2 and graphite from spent lithium-
ion batteries: Grinding flotation. Separation and
Purification Technology, 190, 45–52. doi: 10.1016
/j.seppur.2017.08.049.
Zhan, R., Payne, T., Leftwich, T., Perrine, K., &Pan, L.
(2020). De-agglomeration of cathode composites for
direct recycling of Li-ion batteries. Waste Management,
105, 39–48. doi: 10.1016/j.wasman.2020.01.035.
Zhan, R., Yang, Z., Bloom, I., &Pan, L. (2021).
Significance of a Solid Electrolyte Interphase on
Separation of Anode and Cathode Materials from Spent
Li-Ion Batteries by Froth Flotation. ACS Sustainable
Chemistry &Engineering, 9(1), 531–540. doi: 10.1021
/acssuschemeng.0c07965.
Zhang, G., He, Y., Feng, Y., Wang, H., &Zhu, X. (2018).
Pyrolysis-Ultrasonic-Assisted Flotation Technology
for Recovering Graphite and LiCoO2 from Spent
Lithium-Ion Batteries. ACS Sustainable Chemistry
&Engineering, 6(8), 10896–10904. doi: 10.1021/
acssuschemeng.8b02186.
Zhang, G., He, Y., Wang, H., Feng, Y., Xie, W., &
Zhu, X. (2019). Application of mechanical crush-
ing combined with pyrolysis-enhanced flotation
technology to recover graphite and LiCoO2 from
spent lithium-ion batteries. Journal of Cleaner
Production, 231, 1418–1427. doi: 10.1016
/j.jclepro.2019.04.279.
Zhang, G., Liu, Z., Yuan, X., He, Y., Wei, N., Wang,
H., &Zhang, B. (2022). Recycling of valuable met-
als from spent cathode material by organic pyrolysis
combined with in-situ thermal reduction. Journal of
Hazardous Materials, 430, 128374. doi: 10.1016/j.
jhazmat.2022.128374.
Zhou, H., Pei, B., Fan, Q., Xin, F., &Whittingham, M.
S. (2021). Can Greener Cyrene Replace NMP for
Electrode Preparation of NMC 811 Cathodes? Journal
of The Electrochemical Society, 168(4), 040536. doi:
10.1149/1945-7111/abf87d.
Vanderbruggen, A., Sygusch, J., Rudolph, M., &Serna-
Guerrero, R. (2021). A contribution to understand-
ing the flotation behavior of lithium metal oxides
and spheroidized graphite for lithium-ion battery
recycling. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 626, 127111. doi: 10.1016/j.
colsurfa.2021.127111.
Verdugo, L., Zhang, L., Saito, K., Bruckard, W.,
Menacho, J., &Hoadley, A. (2022). Flotation
behavior of the most common electrode materials
in lithium ion batteries. Separation and Purification
Technology, 301(July), 121885. doi: 10.1016/j.seppur
.2022.121885.
Xiao, J., Li, J., &Xu, Z. (2017). Recycling metals from
lithium ion battery by mechanical separation and vac-
uum metallurgy. Journal of Hazardous Materials, 338,
124–131. doi: 10.1016/j.jhazmat.2017.05.024.
Yu, J., He, Y., Ge, Z., Li, H., Xie, W., &Wang, S.
(2018). A promising physical method for recov-
ery of LiCoO2 and graphite from spent lithium-
ion batteries: Grinding flotation. Separation and
Purification Technology, 190, 45–52. doi: 10.1016
/j.seppur.2017.08.049.
Zhan, R., Payne, T., Leftwich, T., Perrine, K., &Pan, L.
(2020). De-agglomeration of cathode composites for
direct recycling of Li-ion batteries. Waste Management,
105, 39–48. doi: 10.1016/j.wasman.2020.01.035.
Zhan, R., Yang, Z., Bloom, I., &Pan, L. (2021).
Significance of a Solid Electrolyte Interphase on
Separation of Anode and Cathode Materials from Spent
Li-Ion Batteries by Froth Flotation. ACS Sustainable
Chemistry &Engineering, 9(1), 531–540. doi: 10.1021
/acssuschemeng.0c07965.
Zhang, G., He, Y., Feng, Y., Wang, H., &Zhu, X. (2018).
Pyrolysis-Ultrasonic-Assisted Flotation Technology
for Recovering Graphite and LiCoO2 from Spent
Lithium-Ion Batteries. ACS Sustainable Chemistry
&Engineering, 6(8), 10896–10904. doi: 10.1021/
acssuschemeng.8b02186.
Zhang, G., He, Y., Wang, H., Feng, Y., Xie, W., &
Zhu, X. (2019). Application of mechanical crush-
ing combined with pyrolysis-enhanced flotation
technology to recover graphite and LiCoO2 from
spent lithium-ion batteries. Journal of Cleaner
Production, 231, 1418–1427. doi: 10.1016
/j.jclepro.2019.04.279.
Zhang, G., Liu, Z., Yuan, X., He, Y., Wei, N., Wang,
H., &Zhang, B. (2022). Recycling of valuable met-
als from spent cathode material by organic pyrolysis
combined with in-situ thermal reduction. Journal of
Hazardous Materials, 430, 128374. doi: 10.1016/j.
jhazmat.2022.128374.
Zhou, H., Pei, B., Fan, Q., Xin, F., &Whittingham, M.
S. (2021). Can Greener Cyrene Replace NMP for
Electrode Preparation of NMC 811 Cathodes? Journal
of The Electrochemical Society, 168(4), 040536. doi:
10.1149/1945-7111/abf87d.