XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3 3181
REFERENCES
Bai, Y., Hawley, W. B., Jafta, C. J., Muralidharan, N., Polzin,
B. J., &Belharouak, I. (2020). Sustainable recycling of
cathode scraps via Cyrene-based separation. Sustainable
Materials and Technologies, 25, e00202. doi: 10.1016/j.
susmat.2020.e00202.
Balachandran, S., Forsberg, K., Lemaître, T., Vieceli,
N., Lombardo, G., &Petranikova, M. (2021).
Comparative Study for Selective Lithium Recovery via
Chemical Transformations during Incineration and
Dynamic. Metals, 11, 1240.
de Jesus Silva, A. J., Contreras, M. M., Nascimento, C. R.,
&da Costa, M. F. (2020). Kinetics of thermal degra-
dation and lifetime study of poly(vinylidene fluoride)
(PVDF) subjected to bioethanol fuel accelerated aging.
Heliyon, 6(7). doi: 10.1016/j.heliyon.2020.e04573.
Kim, Y., Matsuda, M., Shibayama, A., &Fujita, T. (2003).
Recovery of LiCoO2 from Wasted Lithium Ion Batteries
by using Mineral Processing Technology. Resources
Processing, 51(1), 3–7. doi: 10.4144/rpsj.51.3.
Kong, D., &Dolzhenko, A. (2022). Cyrene :A bio-based
sustainable solvent for organic synthesis. Sustainable
Chemistry and Pharmacy, 25, 100591. doi: 10.1016
/j.scp.2021.100591.
Kuila, A., Maity, N., Chatterjee, D. P., &Nandi, A. K.
(2015). Temperature triggered antifouling proper-
ties of poly(vinylidene fluoride) graft copolymers
with tunable hydrophilicity. Journal of Materials
Chemistry A, 3(25), 13546–13555. doi: 10.1039
/C5TA01306B.
Li, J., Wang, G., &Xu, Z. (2016). Environmentally-
friendly oxygen-free roasting/wet magnetic separation
technology for in situ recycling cobalt, lithium carbon-
ate and graphite from spent LiCoO2/graphite lithium
batteries. Journal of Hazardous Materials, 302, 97–104.
doi: 10.1016/j.jhazmat.2015.09.050.
Liu, J., Wang, H., Hu, T., Bai, X., Wang, S., Xie, W., Hao,
J., &He, Y. (2020). Recovery of LiCoO2 and graphite
from spent lithium-ion batteries by cryogenic grinding
and froth flotation. Minerals Engineering, 148, 106223.
doi: 10.1016/j.mineng.2020.106223.
Lombardo, G., Ebin, B., St Foreman, M. R. J., Steenari,
B. M., &Petranikova, M. (2019). Chemical
Transformations in Li-Ion Battery Electrode Materials
by Carbothermic Reduction. ACS Sustainable
Chemistry and Engineering, 7(16), 13668–13679. doi:
10.1021/acssuschemeng.8b06540.
Lombardo, G., Ebin, B., Steenari, B. M., Alemrajabi, M.,
Karlsson, I., &Petranikova, M. (2021). Comparison
of the effects of incineration, vacuum pyrolysis and
dynamic pyrolysis on the composition of NMC-
lithium battery cathode-material production scraps
and separation of the current collector. Resources,
Conservation and Recycling, 164(July 2020), 105142.
doi: 10.1016/j.resconrec.2020.105142.
Qiu, H., Peschel, C., Winter, M., Nowak, S., Köthe, J.,
&Goldmann, D. (2022). Recovery of Graphite and
Cathode Active Materials from Spent Lithium-Ion
Batteries by Applying Two Pretreatment Methods and
Flotation Combined with a Rapid Analysis Technique.
Metals, 12(4), 677. doi: 10.3390/met12040677.
Rensmo, A., Savvidou, E. K., Cousins, I. T., Hu, X.,
Schellenberger, S., &Benskin, J. P. (2023). Lithium-ion
battery recycling: a source of per- and polyfluoroalkyl
substances (PFAS) to the environment? Environmental
Science: Processes and Impacts, 25(6), 1015–1030. doi:
10.1039/d2em00511e.
Rouquette, L., Lemaître, T., Vieceli, N., &Petranikova,
M. (2023). Intensification of lithium carbonation in
the thermal treatment of spent EV Li-ion batteries via
waste utilization and selective recovery by water leach-
ing. Resources, Conservation and Recycling Advances, 17,
200125. doi: 10.1016/j.rcradv.2022.200125.
Salces, A., Bremerstein, I., Rudolph, M., &Vanderbruggen,
A. (2022). Joint recovery of graphite and lithium
metal oxides from spent lithium-ion batteries using
froth flotation and investigation on process water re-
use. Minerals Engineering, 184, 107670. doi: 10.1016
/j.mineng.2022.107670.
Schwich, L., Schubert, T., &Friedrich, B. (2021). Early-
Stage Recovery of Lithium from Tailored Thermal
Conditioned Black Mass Part I :Mobilizing Lithium
via Supercritical CO2 carbonation. Metals, 11, 177.
Shin, H., Zhan, R., Dhindsa, K., Pan, L., &Han, T.
(2020). Electrochemical Performance of Recycled
Cathode Active Materials Using Froth Flotation-based
Separation Process. Journal of The Electrochemical
Society, 167, 20504. doi: 10.1149/1945-7111/ab6280.
Vanderbruggen, A., Salces, A., Ferreira, A., Rudolph, M.,
&Serna-Guerrero, R. (2022). Improving Separation
Efficiency in End-of-Life Lithium-Ion Batteries
Flotation Using Attrition Pre-Treatment. Minerals,
12(1). doi: 10.3390/min12010072.
REFERENCES
Bai, Y., Hawley, W. B., Jafta, C. J., Muralidharan, N., Polzin,
B. J., &Belharouak, I. (2020). Sustainable recycling of
cathode scraps via Cyrene-based separation. Sustainable
Materials and Technologies, 25, e00202. doi: 10.1016/j.
susmat.2020.e00202.
Balachandran, S., Forsberg, K., Lemaître, T., Vieceli,
N., Lombardo, G., &Petranikova, M. (2021).
Comparative Study for Selective Lithium Recovery via
Chemical Transformations during Incineration and
Dynamic. Metals, 11, 1240.
de Jesus Silva, A. J., Contreras, M. M., Nascimento, C. R.,
&da Costa, M. F. (2020). Kinetics of thermal degra-
dation and lifetime study of poly(vinylidene fluoride)
(PVDF) subjected to bioethanol fuel accelerated aging.
Heliyon, 6(7). doi: 10.1016/j.heliyon.2020.e04573.
Kim, Y., Matsuda, M., Shibayama, A., &Fujita, T. (2003).
Recovery of LiCoO2 from Wasted Lithium Ion Batteries
by using Mineral Processing Technology. Resources
Processing, 51(1), 3–7. doi: 10.4144/rpsj.51.3.
Kong, D., &Dolzhenko, A. (2022). Cyrene :A bio-based
sustainable solvent for organic synthesis. Sustainable
Chemistry and Pharmacy, 25, 100591. doi: 10.1016
/j.scp.2021.100591.
Kuila, A., Maity, N., Chatterjee, D. P., &Nandi, A. K.
(2015). Temperature triggered antifouling proper-
ties of poly(vinylidene fluoride) graft copolymers
with tunable hydrophilicity. Journal of Materials
Chemistry A, 3(25), 13546–13555. doi: 10.1039
/C5TA01306B.
Li, J., Wang, G., &Xu, Z. (2016). Environmentally-
friendly oxygen-free roasting/wet magnetic separation
technology for in situ recycling cobalt, lithium carbon-
ate and graphite from spent LiCoO2/graphite lithium
batteries. Journal of Hazardous Materials, 302, 97–104.
doi: 10.1016/j.jhazmat.2015.09.050.
Liu, J., Wang, H., Hu, T., Bai, X., Wang, S., Xie, W., Hao,
J., &He, Y. (2020). Recovery of LiCoO2 and graphite
from spent lithium-ion batteries by cryogenic grinding
and froth flotation. Minerals Engineering, 148, 106223.
doi: 10.1016/j.mineng.2020.106223.
Lombardo, G., Ebin, B., St Foreman, M. R. J., Steenari,
B. M., &Petranikova, M. (2019). Chemical
Transformations in Li-Ion Battery Electrode Materials
by Carbothermic Reduction. ACS Sustainable
Chemistry and Engineering, 7(16), 13668–13679. doi:
10.1021/acssuschemeng.8b06540.
Lombardo, G., Ebin, B., Steenari, B. M., Alemrajabi, M.,
Karlsson, I., &Petranikova, M. (2021). Comparison
of the effects of incineration, vacuum pyrolysis and
dynamic pyrolysis on the composition of NMC-
lithium battery cathode-material production scraps
and separation of the current collector. Resources,
Conservation and Recycling, 164(July 2020), 105142.
doi: 10.1016/j.resconrec.2020.105142.
Qiu, H., Peschel, C., Winter, M., Nowak, S., Köthe, J.,
&Goldmann, D. (2022). Recovery of Graphite and
Cathode Active Materials from Spent Lithium-Ion
Batteries by Applying Two Pretreatment Methods and
Flotation Combined with a Rapid Analysis Technique.
Metals, 12(4), 677. doi: 10.3390/met12040677.
Rensmo, A., Savvidou, E. K., Cousins, I. T., Hu, X.,
Schellenberger, S., &Benskin, J. P. (2023). Lithium-ion
battery recycling: a source of per- and polyfluoroalkyl
substances (PFAS) to the environment? Environmental
Science: Processes and Impacts, 25(6), 1015–1030. doi:
10.1039/d2em00511e.
Rouquette, L., Lemaître, T., Vieceli, N., &Petranikova,
M. (2023). Intensification of lithium carbonation in
the thermal treatment of spent EV Li-ion batteries via
waste utilization and selective recovery by water leach-
ing. Resources, Conservation and Recycling Advances, 17,
200125. doi: 10.1016/j.rcradv.2022.200125.
Salces, A., Bremerstein, I., Rudolph, M., &Vanderbruggen,
A. (2022). Joint recovery of graphite and lithium
metal oxides from spent lithium-ion batteries using
froth flotation and investigation on process water re-
use. Minerals Engineering, 184, 107670. doi: 10.1016
/j.mineng.2022.107670.
Schwich, L., Schubert, T., &Friedrich, B. (2021). Early-
Stage Recovery of Lithium from Tailored Thermal
Conditioned Black Mass Part I :Mobilizing Lithium
via Supercritical CO2 carbonation. Metals, 11, 177.
Shin, H., Zhan, R., Dhindsa, K., Pan, L., &Han, T.
(2020). Electrochemical Performance of Recycled
Cathode Active Materials Using Froth Flotation-based
Separation Process. Journal of The Electrochemical
Society, 167, 20504. doi: 10.1149/1945-7111/ab6280.
Vanderbruggen, A., Salces, A., Ferreira, A., Rudolph, M.,
&Serna-Guerrero, R. (2022). Improving Separation
Efficiency in End-of-Life Lithium-Ion Batteries
Flotation Using Attrition Pre-Treatment. Minerals,
12(1). doi: 10.3390/min12010072.