XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3 2899
Cilek, E. C. (2009, February). The effect of hydrodynamic
conditions on true flotation and entrainment in flota-
tion of a complex sulphide ore. International Journal
of Mineral Processing, 90(1–4), 35–44. doi: 10.1016
/j.minpro.2008.10.002.
G. W. Cutting (1989) Effect of Froth Structure and
Mobility on Plant Performance, Mineral Processing and
Extractive Metallurgy Review: An International Journal,
5:1–4, 169–201, doi: 0.1080/08827508908952649.
Hoang, D. H., Heitkam, S., Kupka, N., Hassanzadeh, A.,
Peuker, U. A., &Rudolph, M. (2019, February). Froth
properties and entrainment in lab-scale flotation: A case
of carbonaceous sedimentary phosphate ore. Chemical
Engineering Research and Design, 142, 100–110. doi:
10.1016/j.cherd.2018.11.036.
Neethling, S., &Cilliers, J. (2002, March). The entrain-
ment of gangue into a flotation froth. International
Journal of Mineral Processing, 64(2–3), 123–134. doi:
10.1016/s0301-7516(01)00067-9.
Kirjavainen, V. (1992, June). Mathematical model for the
entrainment of hydrophilic particles in froth flotation.
International Journal of Mineral Processing, 35(1–2),
1–11. doi: 10.1016/03017516(92)90002-e.
Yianatos, J., &Contreras, F. (2010, January). Particle
entrainment model for industrial flotation cells.
Powder Technology, 197(3), 260–267. doi: 10.1016
/j.powtec.2009.10.001
Previous Page Next Page