XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3 2869
Rao, B. V. (2023). Chapter 10—Froth flotation and its
modeling aspects. In S. Rajendran &C. V. G. K. Murty
(Eds.), Mineral Processing (pp. 365–436). Elsevier. doi:
10.1016/B978-0-12-823149-4.00010-7.
Reis, A. S., Reis Filho, A. M., Demuner, L. R., &
Barrozo, M. A. S. (2019). Effect of bubble size on the
performance flotation of fine particles of a low-grade
Brazilian apatite ore. Powder Technology, 356, 884–
891. doi: 10.1016/j.powtec.2019.09.029.
Tao, D. (2005). Role of Bubble Size in Flotation of
Coarse and Fine Particles—A Review. Separation
Science and Technology, 39(4), 741–760. doi: 10.1081/
SS-120028444.
Trahar, W. J., &Warren, L. J. (1976). The flotabil-
ity of very fine particles—A review. International
Journal of Mineral Processing, 3(2), 103–131. doi:
10.1016/0301-7516(76)90029-6.
Verster, I., Awatey, B., Forbes, L., et al. (2023, 6–9th of
November 2023). Small-Scale Fluidised Bed Flotation
Device for Ore Amenability Testing. Frlotation 2023,
Cape Town.
Wang, J., Forbes, G., &Forbes, E. (2022). Frother
Characterization Using a Novel Bubble Size
Measurement Technique. Applied Sciences, 12(2). doi:
10.3390/app12020750.
Yoon, R. H., &Luttrell, G. H. (1989). The Effect of Bubble
Size on Fine Particle Flotation. Mineral Processing and
Extractive Metallurgy Review, 5(1–4), 101–122. doi:
10.1080/08827508908952646.
Zanin, M., Chan, E., &Skinner, W. (2021). Modelling
the fluidised bed in HydroFloat ™ for improved pro-
cess control. Powder Technology, 388, 241–250. doi:
10.1016/j.powtec.2021.04.089.
Zhang, W. (2016). The Effects of Frothers and Particles
on the Characteristics of Pulp and Froth Properties
in Flotation—A Critical Review. Journal of Minerals
and Materials Characterization and Engineering, 04,
251–269.
Zhang, W., Nesset, J. E., Rao, R., &Finch, J. A. (2012).
Characterizing Frothers through Critical Coalescence
Concentration (CCC)95-Hydrophile-Lipophile
Balance (HLB) Relationship. Minerals, 2(3), 208–227.
https://www.mdpi.com/2075-163X/2/3/208
Rao, B. V. (2023). Chapter 10—Froth flotation and its
modeling aspects. In S. Rajendran &C. V. G. K. Murty
(Eds.), Mineral Processing (pp. 365–436). Elsevier. doi:
10.1016/B978-0-12-823149-4.00010-7.
Reis, A. S., Reis Filho, A. M., Demuner, L. R., &
Barrozo, M. A. S. (2019). Effect of bubble size on the
performance flotation of fine particles of a low-grade
Brazilian apatite ore. Powder Technology, 356, 884–
891. doi: 10.1016/j.powtec.2019.09.029.
Tao, D. (2005). Role of Bubble Size in Flotation of
Coarse and Fine Particles—A Review. Separation
Science and Technology, 39(4), 741–760. doi: 10.1081/
SS-120028444.
Trahar, W. J., &Warren, L. J. (1976). The flotabil-
ity of very fine particles—A review. International
Journal of Mineral Processing, 3(2), 103–131. doi:
10.1016/0301-7516(76)90029-6.
Verster, I., Awatey, B., Forbes, L., et al. (2023, 6–9th of
November 2023). Small-Scale Fluidised Bed Flotation
Device for Ore Amenability Testing. Frlotation 2023,
Cape Town.
Wang, J., Forbes, G., &Forbes, E. (2022). Frother
Characterization Using a Novel Bubble Size
Measurement Technique. Applied Sciences, 12(2). doi:
10.3390/app12020750.
Yoon, R. H., &Luttrell, G. H. (1989). The Effect of Bubble
Size on Fine Particle Flotation. Mineral Processing and
Extractive Metallurgy Review, 5(1–4), 101–122. doi:
10.1080/08827508908952646.
Zanin, M., Chan, E., &Skinner, W. (2021). Modelling
the fluidised bed in HydroFloat ™ for improved pro-
cess control. Powder Technology, 388, 241–250. doi:
10.1016/j.powtec.2021.04.089.
Zhang, W. (2016). The Effects of Frothers and Particles
on the Characteristics of Pulp and Froth Properties
in Flotation—A Critical Review. Journal of Minerals
and Materials Characterization and Engineering, 04,
251–269.
Zhang, W., Nesset, J. E., Rao, R., &Finch, J. A. (2012).
Characterizing Frothers through Critical Coalescence
Concentration (CCC)95-Hydrophile-Lipophile
Balance (HLB) Relationship. Minerals, 2(3), 208–227.
https://www.mdpi.com/2075-163X/2/3/208