2868 XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3
REFERENCES
Awatey, B., Thanasekaran, H., Kohmuench, J. N., et al.
(2013). Optimization of operating parameters for
coarse sphalerite flotation in the HydroFloat fluidised-
bed separator. Minerals Engineering, 50–51, 99–105.
doi: 10.1016/j.mineng.2013.06.015.
Boshenyatov, B. (2012). Laws of Bubble Coalescence and
their Modeling. In (pp. 211–240).
Cappuccitti, F., &Nesset, J. E. (2010). Frother and
Collector Effects on Flotation Cell Hydrodynamics and
Their Implication on Circuit Performance.
Chanson, H. (1996). Chapter 18 -Summary :Air Bubble
Diffusion in Shear Flows. In H. Chanson (Ed.), Air
Bubble Entrainment in Free-Surface Turbulent Shear
Flows (pp. 216–234). Academic Press. doi: 10.1016/
B978-012168110-4/50022-9.
Cho, Y. S., &Laskowski, J. S. (2002). Effect of flotation
frothers on bubble size and foam stability. International
Journal of Mineral Processing, 64(2), 69–80. doi:
10.1016/S0301-7516(01)00064-3.
Deglon, D. A., Egya-mensah, D., &Franzidis, J. P. (2000).
Review of hydrodynamics and gas dispersion in flota-
tion cells on South African platinum concentrators.
Minerals Engineering, 13(3), 235–244. doi: 10.1016/
S0892-6875(00)00003-0.
Finch, J. A., Nesset, J. E., &Acuña, C. (2008). Role of
frother on bubble production and behaviour in flo-
tation. Minerals Engineering, 21(12), 949–957. doi:
10.1016/j.mineng.2008.04.006.
Forbes, E., Brito e Abreu, S., Tungpalan, K., et al. (2022).
Effect of residual reagents on chalcopyrite losses at
Mount Isa Mines copper Operation: Part II—evalu-
ation of flotation mechanisms. Minerals Engineering,
185, 107687. doi: 10.1016/j.mineng.2022.107687.
Fosu, S., Awatey, B., Skinner, W., &Zanin, M. (2015).
Flotation of coarse composite particles in mechanical
cell vs. the fluidised-bed separator (The HydroFloat ™).
Minerals Engineering, 77, 137–149. doi: 10.1016/j.
mineng.2015.03.011.
Gorain, B. K., Franzidis, J. P., &Manlapig, E. V. (1997).
Studies on impeller type, impeller speed and air flow
rate in an industrial scale flotation cell. Part 4: Effect
of bubble surface area flux on flotation performance.
Minerals Engineering, 10(4), 367–379. doi: 10.1016/
S0892-6875(97)00014-9.
Gupta, A., &Yan, D. S. (2006). Chapter 16—Flotation. In
A. Gupta &D. S. Yan (Eds.), Mineral Processing Design
and Operation (pp. 555–603). Elsevier Science. doi:
10.1016/B978-044451636-7/50017-6.
Harris, G. H., &Jia, R. (2000). An improved class of flota-
tion frothers. International Journal of Mineral Processing,
58(1), 35–43. doi: 10.1016/S0301-7516(99)00070-8.
Janishar Anzoom, S., Bournival, G., &Ata, S. (2024). Coarse
particle flotation: A review. Minerals Engineering, 206,
108499. doi: 10.1016/j.mineng.2023.108499.
K. Demir, A.J. Morrison, C. Evans, et al. (2023). The Bubble
Size Produced in a Pilot HydroFloat ® Cell and Its Effects
on Flotation Flotation 2023, Cape Town, South Africa.
Karakashev, S. I., Grozev, N. A., Ozdemir, O., et al.
(2021). On the frother’s strength and its performance.
Minerals Engineering, 171, 107093. doi: 10.1016/j.
mineng.2021.107093.
Klimpel, R. R., &Isherwood, S. (1991). Some industrial
implications of changing frother chemical structure.
International Journal of Mineral Processing, 33(1), 369–
381. doi: 10.1016/0301-7516(91)90064-P.
Kohmuench, J. N., Luttrell, G. H., &Mankosa, M.
J. (2001). Coarse particle concentration using
the HydroFloat Separator. Mining, Metallurgy &
Exploration, 18(2), 61–67. doi: 10.1007/BF03402873.
Kohmuench, J. N., Mankosa, M. J., Thanasekaran, H., &
Hobert, A. (2018). Improving coarse particle flota-
tion using the HydroFloat ™ (raising the trunk of the
elephant curve). Minerals Engineering, 121, 137–145.
doi: 10.1016/j.mineng.2018.03.004.
Kowalczuk, P., &Drzymala, J. (2015). Physical Meaning
of the Sauter Mean Diameter of Spherical Particulate
Matter. Particulate Science and Technology, 34, 645–
647. doi: 10.1080/02726351.2015.1099582.
Liao, Y., &Dirk, L. (2010). A literature review on mecha-
nisms and models for the coalescence process of fluid
particles. Chemical Engineering Science, 65(10), 2851–
2864. doi: 10.1016/j.ces.2010.02.020.
Nesset, J. E., Hernandez-Aguilar, J. R., Acuna, C., et al.
(2006). Some gas dispersion characteristics of mechan-
ical flotation machines. Minerals Engineering, 19(6),
807–815. doi: 10.1016/j.mineng.2005.09.045.
Nkuna, R., Ijoma, G., Matambo, T., &Chimwani, N.
(2022). Accessing Metals from Low-Grade Ores and
the Environmental Impact Considerations: A Review
of the Perspectives of Conventional versus Bioleaching
Strategies. Minerals, 12, 506. doi: 10.3390/
min12050506.
Pawliszak, P., Bradshaw-Hajek, B. H., Skinner, W., et al.
(2024). Frothers in flotation: A review of performance
and function in the context of chemical classification.
Minerals Engineering, 207, 108567. doi: 10.1016/j.
mineng.2023.108567.
REFERENCES
Awatey, B., Thanasekaran, H., Kohmuench, J. N., et al.
(2013). Optimization of operating parameters for
coarse sphalerite flotation in the HydroFloat fluidised-
bed separator. Minerals Engineering, 50–51, 99–105.
doi: 10.1016/j.mineng.2013.06.015.
Boshenyatov, B. (2012). Laws of Bubble Coalescence and
their Modeling. In (pp. 211–240).
Cappuccitti, F., &Nesset, J. E. (2010). Frother and
Collector Effects on Flotation Cell Hydrodynamics and
Their Implication on Circuit Performance.
Chanson, H. (1996). Chapter 18 -Summary :Air Bubble
Diffusion in Shear Flows. In H. Chanson (Ed.), Air
Bubble Entrainment in Free-Surface Turbulent Shear
Flows (pp. 216–234). Academic Press. doi: 10.1016/
B978-012168110-4/50022-9.
Cho, Y. S., &Laskowski, J. S. (2002). Effect of flotation
frothers on bubble size and foam stability. International
Journal of Mineral Processing, 64(2), 69–80. doi:
10.1016/S0301-7516(01)00064-3.
Deglon, D. A., Egya-mensah, D., &Franzidis, J. P. (2000).
Review of hydrodynamics and gas dispersion in flota-
tion cells on South African platinum concentrators.
Minerals Engineering, 13(3), 235–244. doi: 10.1016/
S0892-6875(00)00003-0.
Finch, J. A., Nesset, J. E., &Acuña, C. (2008). Role of
frother on bubble production and behaviour in flo-
tation. Minerals Engineering, 21(12), 949–957. doi:
10.1016/j.mineng.2008.04.006.
Forbes, E., Brito e Abreu, S., Tungpalan, K., et al. (2022).
Effect of residual reagents on chalcopyrite losses at
Mount Isa Mines copper Operation: Part II—evalu-
ation of flotation mechanisms. Minerals Engineering,
185, 107687. doi: 10.1016/j.mineng.2022.107687.
Fosu, S., Awatey, B., Skinner, W., &Zanin, M. (2015).
Flotation of coarse composite particles in mechanical
cell vs. the fluidised-bed separator (The HydroFloat ™).
Minerals Engineering, 77, 137–149. doi: 10.1016/j.
mineng.2015.03.011.
Gorain, B. K., Franzidis, J. P., &Manlapig, E. V. (1997).
Studies on impeller type, impeller speed and air flow
rate in an industrial scale flotation cell. Part 4: Effect
of bubble surface area flux on flotation performance.
Minerals Engineering, 10(4), 367–379. doi: 10.1016/
S0892-6875(97)00014-9.
Gupta, A., &Yan, D. S. (2006). Chapter 16—Flotation. In
A. Gupta &D. S. Yan (Eds.), Mineral Processing Design
and Operation (pp. 555–603). Elsevier Science. doi:
10.1016/B978-044451636-7/50017-6.
Harris, G. H., &Jia, R. (2000). An improved class of flota-
tion frothers. International Journal of Mineral Processing,
58(1), 35–43. doi: 10.1016/S0301-7516(99)00070-8.
Janishar Anzoom, S., Bournival, G., &Ata, S. (2024). Coarse
particle flotation: A review. Minerals Engineering, 206,
108499. doi: 10.1016/j.mineng.2023.108499.
K. Demir, A.J. Morrison, C. Evans, et al. (2023). The Bubble
Size Produced in a Pilot HydroFloat ® Cell and Its Effects
on Flotation Flotation 2023, Cape Town, South Africa.
Karakashev, S. I., Grozev, N. A., Ozdemir, O., et al.
(2021). On the frother’s strength and its performance.
Minerals Engineering, 171, 107093. doi: 10.1016/j.
mineng.2021.107093.
Klimpel, R. R., &Isherwood, S. (1991). Some industrial
implications of changing frother chemical structure.
International Journal of Mineral Processing, 33(1), 369–
381. doi: 10.1016/0301-7516(91)90064-P.
Kohmuench, J. N., Luttrell, G. H., &Mankosa, M.
J. (2001). Coarse particle concentration using
the HydroFloat Separator. Mining, Metallurgy &
Exploration, 18(2), 61–67. doi: 10.1007/BF03402873.
Kohmuench, J. N., Mankosa, M. J., Thanasekaran, H., &
Hobert, A. (2018). Improving coarse particle flota-
tion using the HydroFloat ™ (raising the trunk of the
elephant curve). Minerals Engineering, 121, 137–145.
doi: 10.1016/j.mineng.2018.03.004.
Kowalczuk, P., &Drzymala, J. (2015). Physical Meaning
of the Sauter Mean Diameter of Spherical Particulate
Matter. Particulate Science and Technology, 34, 645–
647. doi: 10.1080/02726351.2015.1099582.
Liao, Y., &Dirk, L. (2010). A literature review on mecha-
nisms and models for the coalescence process of fluid
particles. Chemical Engineering Science, 65(10), 2851–
2864. doi: 10.1016/j.ces.2010.02.020.
Nesset, J. E., Hernandez-Aguilar, J. R., Acuna, C., et al.
(2006). Some gas dispersion characteristics of mechan-
ical flotation machines. Minerals Engineering, 19(6),
807–815. doi: 10.1016/j.mineng.2005.09.045.
Nkuna, R., Ijoma, G., Matambo, T., &Chimwani, N.
(2022). Accessing Metals from Low-Grade Ores and
the Environmental Impact Considerations: A Review
of the Perspectives of Conventional versus Bioleaching
Strategies. Minerals, 12, 506. doi: 10.3390/
min12050506.
Pawliszak, P., Bradshaw-Hajek, B. H., Skinner, W., et al.
(2024). Frothers in flotation: A review of performance
and function in the context of chemical classification.
Minerals Engineering, 207, 108567. doi: 10.1016/j.
mineng.2023.108567.