2850 XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3
Neethling, S. J., &Cilliers, J. J. (2009). The entrainment
factor in froth flotation: Model for particle size and
other operating parameter effects. International Journal
of Mineral Processing, 93(2), 141–148. doi: 10.1016
/j.minpro.2009.07.004.
Neethling, S. J., Cilliers, J. J., &Woodburn, E. T. (2000).
Prediction of the water distribution in a flowing foam.
Chemical Engineering Science, 55(19), 4021–4028. doi:
10.1016/S0009-2509(00)00054-3.
Neethling, S. J., Mesa, D., Avalos Patino, J., &Brito-
Parada, P. (2024). Simulating Flotation Cells Using
Smoothed Particle Hydrodynamics (SPH). IMPC
2024. IMPC 2024, Washington D.C., USA.
Norori-McCormac, A., Brito-Parada, P. R., Hadler, K.,
Cole, K., &Cilliers, J. J. (2017). The effect of par-
ticle size distribution on froth stability in flotation.
Separation and Purification Technology, 184, 240–247.
doi: 10.1016/j.seppur.2017.04.022.
Trahar, W. J. (1981). A rational interpretation of the
role of particle size in flotation. International
Journal of Mineral Processing, 8(4), 289–327. doi:
10.1016/0301-7516(81)90019-3.
Wills, B. A., &Finch, J. A. (2016). Froth Flotation. In
Wills’ Mineral Processing Technology (pp. 265–380).
Elsevier. doi: 10.1016/B978-0-08-097053-0.00012-1.
Zheng, X., Johnson, N. W., &Franzidis, J.-P. (2006).
Modelling of entrainment in industrial flotation cells:
Water recovery and degree of entrainment. Minerals
Engineering,19(11),1191–1203.doi:10.1016/j.mineng
.2005.11.005
Previous Page Next Page

Extracted Text (may have errors)

2850 XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3
Neethling, S. J., &Cilliers, J. J. (2009). The entrainment
factor in froth flotation: Model for particle size and
other operating parameter effects. International Journal
of Mineral Processing, 93(2), 141–148. doi: 10.1016
/j.minpro.2009.07.004.
Neethling, S. J., Cilliers, J. J., &Woodburn, E. T. (2000).
Prediction of the water distribution in a flowing foam.
Chemical Engineering Science, 55(19), 4021–4028. doi:
10.1016/S0009-2509(00)00054-3.
Neethling, S. J., Mesa, D., Avalos Patino, J., &Brito-
Parada, P. (2024). Simulating Flotation Cells Using
Smoothed Particle Hydrodynamics (SPH). IMPC
2024. IMPC 2024, Washington D.C., USA.
Norori-McCormac, A., Brito-Parada, P. R., Hadler, K.,
Cole, K., &Cilliers, J. J. (2017). The effect of par-
ticle size distribution on froth stability in flotation.
Separation and Purification Technology, 184, 240–247.
doi: 10.1016/j.seppur.2017.04.022.
Trahar, W. J. (1981). A rational interpretation of the
role of particle size in flotation. International
Journal of Mineral Processing, 8(4), 289–327. doi:
10.1016/0301-7516(81)90019-3.
Wills, B. A., &Finch, J. A. (2016). Froth Flotation. In
Wills’ Mineral Processing Technology (pp. 265–380).
Elsevier. doi: 10.1016/B978-0-08-097053-0.00012-1.
Zheng, X., Johnson, N. W., &Franzidis, J.-P. (2006).
Modelling of entrainment in industrial flotation cells:
Water recovery and degree of entrainment. Minerals
Engineering,19(11),1191–1203.doi:10.1016/j.mineng
.2005.11.005

Help

loading