2698 XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3
Perform tests in a wider range of flotation condi-
tions to define the operating range of the piezosensor
i.e., provide a range of tip speeds and superficial gas
velocity
This is to ensure that piezosensor is available as a technique
that is adaptable and provides very good reproducibility.
ACKNOWLEDGMENTS
This work is funded by the EU Horizon 2020 project
FlotSim (Grant Agreement number: 955805). The authors
would like to thank Jesse Bowden (FLSmidth, Salt Lake
City, USA) and Vikrant Kamble (TU Dresden) for their
support in the lab experiments.
REFERENCES
Amini, E., Bradshaw, D. J., &Xie, W. (2016). Influence of
flotation cell hydrodynamics on the flotation kinetics
and scale up, Part 1: Hydrodynamic parameter mea-
surements and ore property determination. Minerals.
Engineering, 99, 40–51. https://www.sciencedirect.com
/science/article/pii/S0892687516303326.
Anandha Rao, M., &Brodkey, R. S. (1972). Continuous
flow stirred tank turbulence parameters in the impeller
stream. Chemical Engineering Science, 27(1), 137–156.
doi: 10.1016/0009-2509(72)80147-7.
Antonia, R. A. (2003). On estimating mean and instan-
taneous turbulent energy dissipation rates with hot
wires. Experimental Thermal and Fluid Science, 27(2),
151–157. doi: 10.1016/S0894-1777(02)00259-5.
Aubin, J., Le Sauze, N., Bertrand, J., Fletcher, D. F.,
&Xuereb, C. (2004). PIV measurements of flow
in an aerated tank stirred by a down- and an up-
pumping axial flow impeller. Experimental Thermal
and Fluid Science, 28(5), 447–456. doi: 10.1016
/j.expthermflusci.2001.12.001.
Balachandar, S., &Eaton, J. K. (2009). Turbulent
Dispersed Multiphase Flow. Annual Review of Fluid
Mechanics, 42(1), 111–133. doi: 10.1146/annurev
.fluid.010908.165243.
Baldi, S., &Yianneskis, M. (2004). On the quantification
of energy dissipation in the impeller stream of a stirred
vessel from fluctuating velocity gradient measurements.
Chemical Engineering Science, 59(13), 2659–2671. doi:
10.1016/j.ces.2004.03.021.
Benjamin, S. F., &Roberts, C. A. (2002). Measuring
flow velocity at elevated temperature with a hot wire
anemometer calibrated in cold flow. International
Journal of Heat and Mass Transfer, 45(4), 703–706. doi:
10.1016/S0017-9310(01)00194-6.
Buchhave, P. (1994). Particle Image Velocimetry. In L.
Lading, G. Wigley, &P. Buchhave (Eds.), Optical
Diagnostics for Flow Processes (pp. 247–269). Springer
US. doi: 10.1007/978-1-4899-1271-8_12.
Colombo, M., &Fairweather, M. (2015). Multiphase
turbulence in bubbly flows: RANS simulations.
International Journal of Multiphase Flow, 77, 222–243.
doi: 10.1016/j.ijmultiphaseflow.2015.09.003.
Dai, Z., Fornasiero, D., &Ralston, J. (1999). Particle–
Bubble Attachment in Mineral Flotation. Journal
of Colloid and Interface Science, 217(1), 70–76. doi:
10.1006/jcis.1999.6319.
Ducoste, J. (2002). A two-scale PBM for modeling turbu-
lent flocculation in water treatment processes. Chemical
Engineering Science, 57(12), 2157–2168. doi: 10.1016
/S0009-2509(02)00108-2.
Gezork, K. M., Bujalski, W., Cooke, M., &Nienow, A.
W. (2000). The Transition from Homogeneous to
Heterogeneous Flow in a Gassed, Stirred Vessel.
Chemical Engineering Research and Design, 78(3), 363–
370. doi: 10.1205/026387600527482.
Hosokawa, S., Suzuki, T., &Tomiyama, A. (2012).
Turbulence kinetic energy budget in bubbly flows in
a vertical duct. Experiments in Fluids, 52(3), 719–728.
doi: 10.1007/s00348-011-1109-z.
J W Elsner, &W Elsner. (1996). On the measure-
ment of turbulence energy dissipation. Measurement
Science andTechnology, 7(10), 1334. doi:
10.1088/0957-0233/7/10/005.
Kresta, S. M., &Wood, P. E. (1991). Prediction of the
three‐dimensional turbulent flow in stirred tanks.
AIChE Journal, 37(3), 448–460. doi: 10.1002/
aic.690370314.
Kuzzay, D., Faranda, D., &Dubrulle, B. (2015). Global vs
local energy dissipation: The energy cycle of the turbu-
lent von Kármán flow. Physics of Fluids, 27(7), 075105.
doi: 10.1063/1.4923750.
Lee, C.-H., Erickson, L. E., &Glasgow, L. A.
(1987). Dynamics Of Bubble Size Distribution
In Turbulent GasLiquid Dispersions. Chemical
Engineering Communications, 61(1–6), 181–195. doi:
10.1080/00986448708912038.
Lee, K. C., &Yianneskis, M. (1998). Turbulence proper-
ties of the impeller stream of a Rushton turbine. AIChE
Journal, 44(1), 13–24. doi: 10.1002/aic.690440104.
Liao, Y., &Lucas, D. (2009). A literature review of theo-
retical models for drop and bubble breakup in turbu-
lent dispersions. Chemical Engineering Science, 64(15),
3389–3406. doi: 10.1016/j.ces.2009.04.026.
Previous Page Next Page