1662 XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3
330, p. 129905, 2022/01/01/ 2022, doi: 10.1016
/j.jclepro.2021.129905.
[36] A.D. Salman et al., “Enhancing the Recovery of Rare
Earth Elements from Red Mud,” Chemical Engineering
&Technology, vol. 44, no. 10, pp. 1768–1774, 2021,
doi: 10.1002/ceat.202100223.
[37] H. Habibi, D. Piruzian, S. Shakibania, Z. Pourkarimi,
and M. Mokmeli, “The effect of carbothermal reduc-
tion on the physical and chemical separation of the
red mud components,” Minerals Engineering, vol.
173, p. 107216, 2021/11/01/ 2021, doi: 10.1016
/j.mineng.2021.107216.
[38] L. Piga, F. Pochetti, and L. Stoppa, “Recovering met-
als from red mud generated during alumina produc-
tion,” JOM, vol. 45, no. 11, pp. 54–59, 1993/11/01
1993, doi: 10.1007/BF03222490.
[39] A. Akcil, N. Akhmadiyeva, R. Abdulvaliyev,
Abhilash, and P. Meshram, “Overview On
Extraction and Separation of Rare Earth Elements
from Red Mud: Focus on Scandium,” Mineral
Processing and Extractive Metallurgy Review, vol.
39, no. 3, pp. 145–151, 2018/05/04 2018, doi:
10.1080/08827508.2017.1288116.
[40] D. Uzun and M. Gülfen, “Dissolution kinetics of
iron and aluminium from red mud in sulphuric acid
solution,” 2007.
[41] H. Naono, K. Nakai, T. Sueyoshi, and H. Yagi,
“Porous texture in hematite derived from goethite:
Mechanism of thermal decomposition of geothite,”
Journal of Colloid and Interface Science, vol. 120,
no. 2, pp. 439–450, 1987/12/01/ 1987, doi:
10.1016/0021-9797(87)90370-5.
[42] C.-s. Wu and D.-y. Liu, “Mineral Phase and
Physical Properties of Red Mud Calcined at
Different Temperatures,” Journal of Nanomaterials,
vol. 2012, p. 628592, 2012/11/05 2012, doi:
10.1155/2012/628592.
[43] W. Zhang and R. Honaker, “Calcination pretreat-
ment effects on acid leaching characteristics of rare
earth elements from middlings and coarse refuse
material associated with a bituminous coal source,”
Fuel, vol. 249, pp. 130–145, 2019/08/01/ 2019, doi:
10.1016/j.fuel.2019.03.063.
[44] M. Fofana, S. Kmet, Š. Jakabský, S. Hredzák, and
G. Kunhalmi, “Treatment of red mud from alumina
production by high–intensity magnetic separation,”
Magnetic and Electrical Separation, vol. 6, 1995.
[45] F. Soltani et al., “Leaching and recovery of phosphate
and rare earth elements from an iron-rich fluorapatite
concentrate: Part I: Direct baking of the concentrate,”
Hydrometallurgy, vol. 177, pp. 66–78, 2018/05/01/
2018, doi: 10.1016/j.hydromet.2018.02.014.
[46] T. Mioduski, “Hydrate numbers of scandium sul-
fate as deduced from solubility data,” Journal of
Radioanalytical and Nuclear Chemistry, vol. 165,
no. 1, pp. 9–17, 1992/05/01 1992, doi: 10.1007
/BF02166815.
330, p. 129905, 2022/01/01/ 2022, doi: 10.1016
/j.jclepro.2021.129905.
[36] A.D. Salman et al., “Enhancing the Recovery of Rare
Earth Elements from Red Mud,” Chemical Engineering
&Technology, vol. 44, no. 10, pp. 1768–1774, 2021,
doi: 10.1002/ceat.202100223.
[37] H. Habibi, D. Piruzian, S. Shakibania, Z. Pourkarimi,
and M. Mokmeli, “The effect of carbothermal reduc-
tion on the physical and chemical separation of the
red mud components,” Minerals Engineering, vol.
173, p. 107216, 2021/11/01/ 2021, doi: 10.1016
/j.mineng.2021.107216.
[38] L. Piga, F. Pochetti, and L. Stoppa, “Recovering met-
als from red mud generated during alumina produc-
tion,” JOM, vol. 45, no. 11, pp. 54–59, 1993/11/01
1993, doi: 10.1007/BF03222490.
[39] A. Akcil, N. Akhmadiyeva, R. Abdulvaliyev,
Abhilash, and P. Meshram, “Overview On
Extraction and Separation of Rare Earth Elements
from Red Mud: Focus on Scandium,” Mineral
Processing and Extractive Metallurgy Review, vol.
39, no. 3, pp. 145–151, 2018/05/04 2018, doi:
10.1080/08827508.2017.1288116.
[40] D. Uzun and M. Gülfen, “Dissolution kinetics of
iron and aluminium from red mud in sulphuric acid
solution,” 2007.
[41] H. Naono, K. Nakai, T. Sueyoshi, and H. Yagi,
“Porous texture in hematite derived from goethite:
Mechanism of thermal decomposition of geothite,”
Journal of Colloid and Interface Science, vol. 120,
no. 2, pp. 439–450, 1987/12/01/ 1987, doi:
10.1016/0021-9797(87)90370-5.
[42] C.-s. Wu and D.-y. Liu, “Mineral Phase and
Physical Properties of Red Mud Calcined at
Different Temperatures,” Journal of Nanomaterials,
vol. 2012, p. 628592, 2012/11/05 2012, doi:
10.1155/2012/628592.
[43] W. Zhang and R. Honaker, “Calcination pretreat-
ment effects on acid leaching characteristics of rare
earth elements from middlings and coarse refuse
material associated with a bituminous coal source,”
Fuel, vol. 249, pp. 130–145, 2019/08/01/ 2019, doi:
10.1016/j.fuel.2019.03.063.
[44] M. Fofana, S. Kmet, Š. Jakabský, S. Hredzák, and
G. Kunhalmi, “Treatment of red mud from alumina
production by high–intensity magnetic separation,”
Magnetic and Electrical Separation, vol. 6, 1995.
[45] F. Soltani et al., “Leaching and recovery of phosphate
and rare earth elements from an iron-rich fluorapatite
concentrate: Part I: Direct baking of the concentrate,”
Hydrometallurgy, vol. 177, pp. 66–78, 2018/05/01/
2018, doi: 10.1016/j.hydromet.2018.02.014.
[46] T. Mioduski, “Hydrate numbers of scandium sul-
fate as deduced from solubility data,” Journal of
Radioanalytical and Nuclear Chemistry, vol. 165,
no. 1, pp. 9–17, 1992/05/01 1992, doi: 10.1007
/BF02166815.