10
[16] Barone, T. L., Dubaniewicz, T. H., Friend, S. A.,
Zlochower, I. A., Bugarski, A. D., Rayyan, N. S.
(2021). Lithium-ion battery explosion aerosols:
Morphology and elemental composition. Aerosol
Science and Technology, 55(10), 1183–1201.
[17] Massé, R. C., C. Liu, Y. Li, L. Mai, and G. Cao
(2017). Energy storage through intercalation reac-
tions: Electrodes for rechargeable batteries. National
Science Review 4 (1): 26–53.
[18] Nitta, N., F. Wu, J. T. Lee, and G. Yushin (2015).
Li-ion battery materials: Present and future. Materials
Today 18 (5):252–264.
[19] Sandhya, C.P., John, B. and Gouri, C. (2014).
Lithium titanate as anode material for lithium-ion
cells: a review. Ionics, 20(5), pp.601–620.
[20] Xia, H., Luo, Z. and Xie, J. (2014). Nanostructured
lithium titanate and lithium titanate/carbon nano-
composite as anode materials for advanced lith-
ium-ion batteries. Nanotechnology Reviews, 3(2),
pp.161–175.
[21] Liu, W., Zhang, J., Wang, Q., Xie, X., Lou, Y. and
Xia, B. (2014). The effects of Li2CO3 particle size on
the properties of lithium titanate as anode material for
lithium-ion batteries. Ionics, 20(11), pp.1553–1560.
[22] Rashid, M., Sahoo, A., Gupta, A. and Sharma, Y.
(2018). Numerical modelling of transport limitations
in lithium titanate anodes. Electrochimica Acta, 283,
pp.313–326.
[23] Yi, J., Wang, C. and Xia, Y. (2013). Comparison
of thermal stability between micro-and nano-sized
materials for lithium-ion batteries. Electrochemistry
communications, 33, pp.115–118.
[24] Kvasha, A., Gutiérrez, C., Osa, U., de Meatza, I.,
Blazquez, J.A., Macicior, H. and Urdampilleta,
I. (2018). A comparative study of thermal run-
away of commercial lithium ion cells. Energy, 159,
pp.547–557.
[25] Reeves-McLaren, N., Hong, M., Alqurashi, H., Xue,
L., Sharp, J., Rennie, A.J. and Boston, R. (2018). The
Spinel LiCoMnO4: 5V Cathode and Conversion
Anode. Energy Procedia, 151, pp.158–162.
[26] Chiba, K., Hamada, Y., Hayakawa, H., Hamao, N.,
Kataoka, K., Mamiya, M., Kijima, N., Ishida, N.,
Idemoto, Y. and Akimoto, J. (2019). A novel syn-
thetic route of micrometer-sized LiCoMnO4 as 5 V
cathode material for advanced lithium ion batteries.
Solid State Ionics, 333, pp.9–15.
[27] Ariyoshi, K., Yamamoto, H. and Yamada, Y. (2018).
High dimensional stability of LiCoMnO4 as positive
electrodes operating at high voltage for lithium-ion
batteries with a long cycle life. Electrochimica Acta,
260, pp.498–503.
[28] Uyama, T., Inoue, T. and Mukai, K. (2018). Realizing
the Ultimate Thermal Stability of a Lithium-Ion
Battery Using Two Zero-Strain Insertion Materials.
ACS Applied Energy Materials, 1(10), pp.5712–5717.
[29] Nestler, T., R. Schmid, W. Münchgesang, V. Bazhenov,
J. Schilm, T. Leisegang, and D. C. Meyer (2014).
Separators-technology review: Ceramic based sepa-
rators for secondary batteries. American Institute of
Physics Conference Proceedings 1597 (1):155–184.
[30] Duan, J., X. Tang, H. Dai, Y. Yang, W. Wu, X. Wei,
and Y. Huang (2020). Building safe lithium-ion bat-
teries for electric vehicles: A review. Electrochemical
Energy Reviews 3:1–42.
[31] Golubkov, A., Scheikl, S., Planteu, R., Voitic, G.,
Wiltsche, H., Stangl, C., Fauler, G., Thaler, A.,
Hacker, V., (2015). Thermal runaway of commer-
cial 18650 Li-ion batteries with LFP and NCA cath-
odes—impact of state of charge and overcharge. RSC
Adv. 5, 57171–57186.
[32] Baird, A., Archibald, E., Marr, K., Ezekoye, O. (2020).
Explosion hazards from lithium-ion battery vent gas.
Journal of Power Sources. Volume 446, ISSN 0378-
7753, doi.org/10.1016/j.jpowsour.2019.227257.
[16] Barone, T. L., Dubaniewicz, T. H., Friend, S. A.,
Zlochower, I. A., Bugarski, A. D., Rayyan, N. S.
(2021). Lithium-ion battery explosion aerosols:
Morphology and elemental composition. Aerosol
Science and Technology, 55(10), 1183–1201.
[17] Massé, R. C., C. Liu, Y. Li, L. Mai, and G. Cao
(2017). Energy storage through intercalation reac-
tions: Electrodes for rechargeable batteries. National
Science Review 4 (1): 26–53.
[18] Nitta, N., F. Wu, J. T. Lee, and G. Yushin (2015).
Li-ion battery materials: Present and future. Materials
Today 18 (5):252–264.
[19] Sandhya, C.P., John, B. and Gouri, C. (2014).
Lithium titanate as anode material for lithium-ion
cells: a review. Ionics, 20(5), pp.601–620.
[20] Xia, H., Luo, Z. and Xie, J. (2014). Nanostructured
lithium titanate and lithium titanate/carbon nano-
composite as anode materials for advanced lith-
ium-ion batteries. Nanotechnology Reviews, 3(2),
pp.161–175.
[21] Liu, W., Zhang, J., Wang, Q., Xie, X., Lou, Y. and
Xia, B. (2014). The effects of Li2CO3 particle size on
the properties of lithium titanate as anode material for
lithium-ion batteries. Ionics, 20(11), pp.1553–1560.
[22] Rashid, M., Sahoo, A., Gupta, A. and Sharma, Y.
(2018). Numerical modelling of transport limitations
in lithium titanate anodes. Electrochimica Acta, 283,
pp.313–326.
[23] Yi, J., Wang, C. and Xia, Y. (2013). Comparison
of thermal stability between micro-and nano-sized
materials for lithium-ion batteries. Electrochemistry
communications, 33, pp.115–118.
[24] Kvasha, A., Gutiérrez, C., Osa, U., de Meatza, I.,
Blazquez, J.A., Macicior, H. and Urdampilleta,
I. (2018). A comparative study of thermal run-
away of commercial lithium ion cells. Energy, 159,
pp.547–557.
[25] Reeves-McLaren, N., Hong, M., Alqurashi, H., Xue,
L., Sharp, J., Rennie, A.J. and Boston, R. (2018). The
Spinel LiCoMnO4: 5V Cathode and Conversion
Anode. Energy Procedia, 151, pp.158–162.
[26] Chiba, K., Hamada, Y., Hayakawa, H., Hamao, N.,
Kataoka, K., Mamiya, M., Kijima, N., Ishida, N.,
Idemoto, Y. and Akimoto, J. (2019). A novel syn-
thetic route of micrometer-sized LiCoMnO4 as 5 V
cathode material for advanced lithium ion batteries.
Solid State Ionics, 333, pp.9–15.
[27] Ariyoshi, K., Yamamoto, H. and Yamada, Y. (2018).
High dimensional stability of LiCoMnO4 as positive
electrodes operating at high voltage for lithium-ion
batteries with a long cycle life. Electrochimica Acta,
260, pp.498–503.
[28] Uyama, T., Inoue, T. and Mukai, K. (2018). Realizing
the Ultimate Thermal Stability of a Lithium-Ion
Battery Using Two Zero-Strain Insertion Materials.
ACS Applied Energy Materials, 1(10), pp.5712–5717.
[29] Nestler, T., R. Schmid, W. Münchgesang, V. Bazhenov,
J. Schilm, T. Leisegang, and D. C. Meyer (2014).
Separators-technology review: Ceramic based sepa-
rators for secondary batteries. American Institute of
Physics Conference Proceedings 1597 (1):155–184.
[30] Duan, J., X. Tang, H. Dai, Y. Yang, W. Wu, X. Wei,
and Y. Huang (2020). Building safe lithium-ion bat-
teries for electric vehicles: A review. Electrochemical
Energy Reviews 3:1–42.
[31] Golubkov, A., Scheikl, S., Planteu, R., Voitic, G.,
Wiltsche, H., Stangl, C., Fauler, G., Thaler, A.,
Hacker, V., (2015). Thermal runaway of commer-
cial 18650 Li-ion batteries with LFP and NCA cath-
odes—impact of state of charge and overcharge. RSC
Adv. 5, 57171–57186.
[32] Baird, A., Archibald, E., Marr, K., Ezekoye, O. (2020).
Explosion hazards from lithium-ion battery vent gas.
Journal of Power Sources. Volume 446, ISSN 0378-
7753, doi.org/10.1016/j.jpowsour.2019.227257.