8
[4] Lee, I., &Yang, J. (2009). Common clustering algo-
rithms. In S. D. Brown, R. Tauler, &B. Walczak
(Eds.), Comprehensive chemometrics (pp. 577–618).
Oxford, England: Elsevier.
[5] Lotter, N. O., &Bradshaw, D. J. (2010). The formu-
lation and use of mixed collectors in sulphide flota-
tion. Minerals engineering, 23(11–13), 945–951.
[6] McFadzean, B., Castelyn, D. G., &O’connor, C. T.
(2012). The effect of mixed thiol collectors on the flo-
tation of galena. Minerals Engineering, 36, 211–218.
[7] Moreno, Y. S., Bournival, G., &Ata, S. (2022).
Classification of flotation frothers–A statistical
approach. Chemical Engineering Science, 248,
117252.
[8] Natarajan, R., Nirdosh, I., Basak, S. C., &Mills, D.
R. (2002). QSAR modelling of flotation collectors
using principal components extracted from topo-
logical indices. Journal of chemical information and
computer sciences, 42(6), 1425–1430.
[9] Sutherland, K. L., &Wark, I. W. (1955). Principles
of Flotation. Australasian Institute of Mining and
Metallurgy.
[10] Suoninen, E., &Laajalehto, K. (1993). Structure
of thiol collector layers on sulphide surfaces. In
Proceedings of the XVIII International Mineral
Processing Congress (pp. 625–629). Carlton,
Victoria, Australia: Australasian Institute of Mining
and Metallurgy.
[11] Taguta, J., O’Connor, C. T., &McFadzean, B.
(2018). Investigating the interaction of thiol collec-
tors and collector mixtures with sulphide minerals
using thermochemistry and microflotation. Minerals
Engineering, 119, 99–104.
[12] Wakamatsu, T., Numata, Y., &Park, C. H. (1980).
Fundamental study on the flotation of minerals using
two kinds of collectors. Fine Particle Processing, 1,
787–801.
[13] Laskowski, J. S. (2010). A new approach to classifi-
cation of flotation collectors. Canadian Metallurgical
Quarterly, 49(4), 397–404.
[4] Lee, I., &Yang, J. (2009). Common clustering algo-
rithms. In S. D. Brown, R. Tauler, &B. Walczak
(Eds.), Comprehensive chemometrics (pp. 577–618).
Oxford, England: Elsevier.
[5] Lotter, N. O., &Bradshaw, D. J. (2010). The formu-
lation and use of mixed collectors in sulphide flota-
tion. Minerals engineering, 23(11–13), 945–951.
[6] McFadzean, B., Castelyn, D. G., &O’connor, C. T.
(2012). The effect of mixed thiol collectors on the flo-
tation of galena. Minerals Engineering, 36, 211–218.
[7] Moreno, Y. S., Bournival, G., &Ata, S. (2022).
Classification of flotation frothers–A statistical
approach. Chemical Engineering Science, 248,
117252.
[8] Natarajan, R., Nirdosh, I., Basak, S. C., &Mills, D.
R. (2002). QSAR modelling of flotation collectors
using principal components extracted from topo-
logical indices. Journal of chemical information and
computer sciences, 42(6), 1425–1430.
[9] Sutherland, K. L., &Wark, I. W. (1955). Principles
of Flotation. Australasian Institute of Mining and
Metallurgy.
[10] Suoninen, E., &Laajalehto, K. (1993). Structure
of thiol collector layers on sulphide surfaces. In
Proceedings of the XVIII International Mineral
Processing Congress (pp. 625–629). Carlton,
Victoria, Australia: Australasian Institute of Mining
and Metallurgy.
[11] Taguta, J., O’Connor, C. T., &McFadzean, B.
(2018). Investigating the interaction of thiol collec-
tors and collector mixtures with sulphide minerals
using thermochemistry and microflotation. Minerals
Engineering, 119, 99–104.
[12] Wakamatsu, T., Numata, Y., &Park, C. H. (1980).
Fundamental study on the flotation of minerals using
two kinds of collectors. Fine Particle Processing, 1,
787–801.
[13] Laskowski, J. S. (2010). A new approach to classifi-
cation of flotation collectors. Canadian Metallurgical
Quarterly, 49(4), 397–404.