8
REFERENCES
[1] Boerjan, W., Ralph, J., &Baucher, M. (2003).
Lignin Biosynthesis. In Annual Review of Plant
Biology (Vol. 54). https://doi.org/10.1146/annurev
.arplant.54.031902.134938.
[2] Del Saz-Orozco, B., Alonso, M. V., Oliet, M.,
Domínguez, J. C., Rojo, E., &Rodriguez, F. (2015).
Lignin particle- and wood flour-reinforced pheno-
lic foams: Friability, thermal stability and effect of
hygrothermal aging on mechanical properties and
morphology. Composites Part B: Engineering, 80.
https://doi.org/10.1016/j.compositesb.2015.05.043.
[3] Desai, A., Auad, M. L., Hongbin Shen, &Nutt, S. R.
(2008). Mechanical behavior of hybrid composite phe-
nolic foam. Journal of Cellular Plastics, 44(1), 15–36.
https://doi.org/10.1177/0021955X07078021.
[4] Dong, H., Hu, X., Liu, J., Liang, Y., Wang, W.,
Tang, H., Zhu, F., He, Z., &Wang, P. (2023). Study
of preparation and properties of environmentally
friendly phenolic resin for mining. Journal of Applied
Polymer Science, 140(23). https://doi.org/10.1002
/app.53932.
[5] Hefni, M., &Hassani, F. (2020). Experimental devel-
opment of a novel mine backfill material: Foam mine
fill. Minerals, 10(6), 1–16. https://doi.org/10.3390
/min10060564.
[6] Hu, X., Cheng, W., Nie, W., &Wang, D. (2016).
Flame retardant, thermal, and mechanical properties
of glass fiber/nanoclay reinforced phenol–urea–form-
aldehyde foam. Polymer Composites, 37(8), 2323–
2332. https://doi.org/10.1002/pc.23411.
[7] Hu, X. M., Cheng, W. M., &Wang, D. M. (2014).
Properties and applications of novel composite foam
for blocking air leakage in coal mine. Russian Journal
of Applied Chemistry, 87(8), 1099–1108. https://
doi.org/10.1134/S1070427214080151.
[8] Hu, X. M., Zhao, Y. Y., &Cheng, W. M. (2015).
Effect of formaldehyde/phenol ratio (F/P) on the
properties of phenolic resins and foams synthesized
at room temperature. Polymer Composites, 36(8),
1531–1540. https://doi.org/10.1002/pc.23060.
[9] Hu, X., Zhao, Y., Cheng, W., Wang, D., &Nie, W.
(2014). Synthesis and characterization of phenol-
urea-formaldehyde foaming resin used to block air
leakage in mining. Polymer Composites, 35(10),
2056–2066. https://doi.org/10.1002/pc.22867.
[10] Londoño Zuluaga, C., Du, J., Chang, H.-M., Jameel,
H., &Gonzalez, R. W. (2018). Lignin Modifications
and Perspectives towards Applications of Phenolic
Foams: A Review. BioResources, 13(4). https://doi
.org/10.15376/biores.13.4.londono_zuluaga.
[11] Lu, W., Cao, H., Sun, X., Hu, X., Li, J., Li, J., &
Kong, B. (2022). A Review on the Types, Performance
and Environmental Protection of Filling &Plugging
Materials for Prevention and Control of Coal
Spontaneous Combustion in China. Combustion
Science and Technology. https://doi.org/10.1080
/00102202.2022.2134994.
[12] Lu, X., Wang, D., Qin, B., Tian, F., Shi, G., &
Dong, S. (2015). Novel approach for extinguishing
large-scale coal fires using gas–liquid foams in open
pit mines. Environmental Science and Pollution
Research, 22(23), 18363–18371. https://doi
.org/10.1007/s11356-015-5385-7.
[13] Mendelsohn, M. A., Meier, J. F., Rudd, G. E., &
Rosenblatt, G. B. (1979). Mechanical and processing
requirements for a shock mitigating phenolic foam.
Journal of Applied Polymer Science, 23(2), 325–331.
https://doi.org/10.1002/app.1979.070230203.
[14] Ni, X., &Pereira, N. E. (2000). Parameters affect-
ing fluid dispersion in a continuous oscillatory baf-
fled tube. AIChE Journal, 46(1), 37–45. https://doi
.org/10.1002/aic.690460106.
[15] Sarika, P. R., Nancarrow, P., Khansaheb, A., &
Ibrahim, T. (2021). Progress in Bio-Based Phenolic
Foams: Synthesis, Properties, and Applications. In
ChemBioEng Reviews (Vol. 8, Issue 6, pp. 612–632).
John Wiley and Sons Inc. https://doi.org/10.1002
/cben.202100017.
[16] Shen, H., Lavoie, A. J., &Nutt, S. R. (2003).
Enhanced peel resistance of fiber reinforced pheno-
lic foams. Composites Part A: Applied Science and
Manufacturing, 34(10). https://doi.org/10.1016
/S1359-835X(03)00210-0.
[17] Srivastava, K., Srivastava, D., &Tripathi, S. K.
(2015). Microwave-assisted synthesis and char-
acterization of resole-type phenolic resins. High
Performance Polymers, 27(1), 19–30. https://doi
.org/10.1177/0954008314537538.
[18] Wang, X., Yuan, L., Zhao, H., Ou, Y., Gao, T., Xu,
T., &Chen, L. (2024). Preparation and proper-
ties of phenolic foam modified with boric acid and
organosiloxane by supercritical CO2 technology.
Journal of Applied Polymer Science, 141(28). https://
doi.org/10.1002/app.55649.
[19] Weng, S., Li, Z., Bo, C., Song, F., Xu, Y., Hu, L.,
Zhou, Y., &Jia, P. (2023). Design lignin doped
with nitrogen and phosphorus for flame retardant
phenolic foam materials. Reactive and Functional
Previous Page Next Page