11
mining operations, both for productivity and safety, via the
optimal cut parameters and intervals of operation.
REFERENCES
[1] Anlimah, F., Gopaldasani, V., MacPhail, C. and
Davies, B., 2023. A systematic review of the effec-
tiveness of dust control measures adopted to reduce
workplace exposure. Environmental Science and
Pollution Research, 30(19), pp.54407–54428.
[2] Anthony, D. B., Howard, J. B., Hottel, H. C., &
Meissner, H. P. (1976). Rapid devolatilization and
hydrogasification of bituminous coal. Fuel, 55(2),
121–128.
[3] Arimoto, R., Ray, B. J., Lewis, N. F., Tomza, U., &
Duce, R. A. (1997). Mass‐particle size distributions
of atmospheric dust and the dry deposition of dust
to the remote ocean. Journal of Geophysical Research:
Atmospheres, 102(D13), 15867–15874.
[4] Armbruster, L., &Breuer, H. (1982). Investigations
into defining inhalable dust. In Inhaled particles V
(pp. 21–32). Pergamon.
[5] Armbruster, L., &Breuer, H. (1982). Investigations
into defining inhalable dust. In Inhaled particles V
(pp. 21–32). Pergamon.
[6] Belle, B. K., &Ramani, R. V. (2019). Respirable
Coal Dust: A Review of Health Effects and Monitoring
Practices. International Journal of Mining Science
and Technology, 29(2), 189–199. doi: 10.1016
/j.ijmst.2018.12.005.
[7] Bilgin, N., Copur, H., &Balci, C. (2017). The Role
of Specific Energy in the Performance and Efficiency
of Mechanical Excavation Systems. Tunnelling
and Underground Space Technology, 69, 40–48.
doi: 10.1016/j.tust.2017.06.001.
[8] Bilgin, N., Copur, H., &Balci, C. (2017). The Role
of Specific Energy in the Performance and Efficiency
of Mechanical Excavation Systems. Tunnelling
and Underground Space Technology, 69, 40–48.
doi: 10.1016/j.tust.2017.06.001.
[9] Bilgin, N., Copur, H., &Balci, C. (2017). The Role
of Specific Energy in the Performance and Efficiency
of Mechanical Excavation Systems. Tunnelling
and Underground Space Technology, 69, 40–48.
doi: 10.1016/j.tust.2017.06.001.
[10] Blackley, D.J., Halldin, C.N. and Laney, A.S., 2018.
The continued increase in prevalence of coal work-
ers’ pneumoconiosis in the United States, 1970–
2017. American Journal of public health, 108(9),
pp.1220–1222.
[11] Brune, J. N. (1970). Tectonic stress and the spectra
of seismic shear waves from earthquakes. Journal of
geophysical research, 75(26), 4997–5009.
[12] Brune, J. N., Brown, S., &Johnson, P. A. (1993).
Rupture mechanism and interface separation in foam
rubber models of earthquakes: A possible solution to
the heat flow paradox and the paradox of large over-
thrusts. Tectonophysics, 218(1–3), 59–67.
[13] Brune, J. N., Henyey, T. L., &Roy, R. F. (1969). Heat
flow, stress, and rate of slip along the San Andreas
fault, California. Journal of Geophysical Research,
74(15), 3821- 3827.
[14] Brune, J., &Dorman, J. (1963). Seismic waves and
earth structure in the Canadian Shield. Bulletin of the
Seismological Society of America, 53(1), 167–209.
[15] Burba, J. D. (2011). Workplace Explosions:
A Comparison of the Mine Safety and Health
Administration and the Occupational Safety and Health
Administration (Master’s thesis, Eastern Kentucky
University).
[16] Carcangiu, S., Celli, G., Fanni, A., Garau, M.,
Montisci, A. and Pilo, F., 2017, September. Bit load-
ing optimization for smart grid energy storage man-
agement. In 2017 IEEE 3rd International Forum
on Research and Technologies for Society and Industry
(RTSI) (pp. 1–6). IEEE.
[17] Carlson, G. A. (1992). Computer simulation of the
molecular structure of bituminous coal. Energy &
fuels, 6(6), 771–778.
[18] Cashdollar, K. L., Hertzberg, M., &Green, G.
M. (1992). Hazards of explosives dusts: Particle size
effects (No. DOE/EH/89084-T8). Bureau of Mines,
Pittsburgh, PA (United States). Pittsburgh Research
Center.
[19] Castells, B., Tascón, A., Amez, I., &Fernandez-
Anez, N. (2023). Influence of Particle Size on the
Flammability and Explosibility of Biomass Dusts:
Is a New Approach Needed? Fire Technology, 59(6),
2989–3025.
[20] Cecala, A. B., Patts, J. R., Louk, A. K., Haas, E. J., &
Colinet, J. F. (2020). Forty years of NIOSH/USBM-
developed control technology: to reduce respirable
dust exposure for miners in industrial minerals pro-
cessing operations. Mining engineering, 72(6), 28.
[21] Chatterjee, R., &Pal, P. K. (2010). Estimation of
stress magnitude and physical properties for coal
seam of Rangamati area, Raniganj coalfield, India.
International Journal of Coal Geology, 81(1), 25–36.
[22] Chechanovsky, N., Hovav, R., Frenkel, R.,
Faigenboim, A., Eselson, Y., Petreikov, M., ...&
mining operations, both for productivity and safety, via the
optimal cut parameters and intervals of operation.
REFERENCES
[1] Anlimah, F., Gopaldasani, V., MacPhail, C. and
Davies, B., 2023. A systematic review of the effec-
tiveness of dust control measures adopted to reduce
workplace exposure. Environmental Science and
Pollution Research, 30(19), pp.54407–54428.
[2] Anthony, D. B., Howard, J. B., Hottel, H. C., &
Meissner, H. P. (1976). Rapid devolatilization and
hydrogasification of bituminous coal. Fuel, 55(2),
121–128.
[3] Arimoto, R., Ray, B. J., Lewis, N. F., Tomza, U., &
Duce, R. A. (1997). Mass‐particle size distributions
of atmospheric dust and the dry deposition of dust
to the remote ocean. Journal of Geophysical Research:
Atmospheres, 102(D13), 15867–15874.
[4] Armbruster, L., &Breuer, H. (1982). Investigations
into defining inhalable dust. In Inhaled particles V
(pp. 21–32). Pergamon.
[5] Armbruster, L., &Breuer, H. (1982). Investigations
into defining inhalable dust. In Inhaled particles V
(pp. 21–32). Pergamon.
[6] Belle, B. K., &Ramani, R. V. (2019). Respirable
Coal Dust: A Review of Health Effects and Monitoring
Practices. International Journal of Mining Science
and Technology, 29(2), 189–199. doi: 10.1016
/j.ijmst.2018.12.005.
[7] Bilgin, N., Copur, H., &Balci, C. (2017). The Role
of Specific Energy in the Performance and Efficiency
of Mechanical Excavation Systems. Tunnelling
and Underground Space Technology, 69, 40–48.
doi: 10.1016/j.tust.2017.06.001.
[8] Bilgin, N., Copur, H., &Balci, C. (2017). The Role
of Specific Energy in the Performance and Efficiency
of Mechanical Excavation Systems. Tunnelling
and Underground Space Technology, 69, 40–48.
doi: 10.1016/j.tust.2017.06.001.
[9] Bilgin, N., Copur, H., &Balci, C. (2017). The Role
of Specific Energy in the Performance and Efficiency
of Mechanical Excavation Systems. Tunnelling
and Underground Space Technology, 69, 40–48.
doi: 10.1016/j.tust.2017.06.001.
[10] Blackley, D.J., Halldin, C.N. and Laney, A.S., 2018.
The continued increase in prevalence of coal work-
ers’ pneumoconiosis in the United States, 1970–
2017. American Journal of public health, 108(9),
pp.1220–1222.
[11] Brune, J. N. (1970). Tectonic stress and the spectra
of seismic shear waves from earthquakes. Journal of
geophysical research, 75(26), 4997–5009.
[12] Brune, J. N., Brown, S., &Johnson, P. A. (1993).
Rupture mechanism and interface separation in foam
rubber models of earthquakes: A possible solution to
the heat flow paradox and the paradox of large over-
thrusts. Tectonophysics, 218(1–3), 59–67.
[13] Brune, J. N., Henyey, T. L., &Roy, R. F. (1969). Heat
flow, stress, and rate of slip along the San Andreas
fault, California. Journal of Geophysical Research,
74(15), 3821- 3827.
[14] Brune, J., &Dorman, J. (1963). Seismic waves and
earth structure in the Canadian Shield. Bulletin of the
Seismological Society of America, 53(1), 167–209.
[15] Burba, J. D. (2011). Workplace Explosions:
A Comparison of the Mine Safety and Health
Administration and the Occupational Safety and Health
Administration (Master’s thesis, Eastern Kentucky
University).
[16] Carcangiu, S., Celli, G., Fanni, A., Garau, M.,
Montisci, A. and Pilo, F., 2017, September. Bit load-
ing optimization for smart grid energy storage man-
agement. In 2017 IEEE 3rd International Forum
on Research and Technologies for Society and Industry
(RTSI) (pp. 1–6). IEEE.
[17] Carlson, G. A. (1992). Computer simulation of the
molecular structure of bituminous coal. Energy &
fuels, 6(6), 771–778.
[18] Cashdollar, K. L., Hertzberg, M., &Green, G.
M. (1992). Hazards of explosives dusts: Particle size
effects (No. DOE/EH/89084-T8). Bureau of Mines,
Pittsburgh, PA (United States). Pittsburgh Research
Center.
[19] Castells, B., Tascón, A., Amez, I., &Fernandez-
Anez, N. (2023). Influence of Particle Size on the
Flammability and Explosibility of Biomass Dusts:
Is a New Approach Needed? Fire Technology, 59(6),
2989–3025.
[20] Cecala, A. B., Patts, J. R., Louk, A. K., Haas, E. J., &
Colinet, J. F. (2020). Forty years of NIOSH/USBM-
developed control technology: to reduce respirable
dust exposure for miners in industrial minerals pro-
cessing operations. Mining engineering, 72(6), 28.
[21] Chatterjee, R., &Pal, P. K. (2010). Estimation of
stress magnitude and physical properties for coal
seam of Rangamati area, Raniganj coalfield, India.
International Journal of Coal Geology, 81(1), 25–36.
[22] Chechanovsky, N., Hovav, R., Frenkel, R.,
Faigenboim, A., Eselson, Y., Petreikov, M., ...&