914 XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3
Klimpel, R.R. (1995). The Influence of Frother Structure
on Industrial Coal Flotation. In S.K. Kawatra (Ed.),
High Efficiency Coal Preparation: An International
Symposium (pp. 141–151). Littleton: Society for
Mining, Metallurgy and Exploration.
Koh, E.J., Amini, E., McLachlan, G.J., &Beaton, N.
(2021). Utilising convolutional neural networks to
perform fast automated modal mineralogy analysis for
thin-section optical microscopy. Minerals Engineering,
173, 107230. doi: 10.1016/j.mineng.2021.107230.
Koh, E.J., Amini, E., Spier, A.C., McLachlan, G.J., Xie,
W., &Beaton, N. (2024). A mineralogy characterisa-
tion technique for copper ore in flotation pulp using
deep learning machine vision with optical microscopy.
Minerals Engineering, 205, 108481. doi: 10.1016/j.
mineng.2023.108481.
Leroy, S., &Pirard, E. (2019). Mineral recognition of sin-
gle particles in ore slurry samples by means of multi-
spectral image processing. Minerals Engineering, 132,
228–237.
Leroy, S., Dislaire, G., Bastin, D., &Pirard, E. (2011).
Optical analysis of particle size and chromite liberation
from pulp samples of a UG2 ore regrinding circuit.
Minerals Engineering, 24, 1340–1347.
Liu, M., Cheng, C., Yang, L., Liu, S., Chen, W., &Liu, G.
(2023). The low-carbon flotation separation of chalco-
pyrite from pyrite with a fire-new alkylamine-triazine-
dithiol collector. Applied Surface Science, 640, 158338.
doi: 10.1016/j.apsusc.2023.158338.
Mathe, Z.T., Harris, M.C., &O’Connor, C.T. (2000). A
review of methods to model the froth phase in non-steady
state flotation systems. Minerals Engineering, 13(2),
127–140. doi: 10.1016/S0892-6875(99)00159-4.
Matsuoka, H., Mitsuhashi, K., Kawata, M., &Tokoro,
C. (2020). Derivation of Flotation Kinetic Model for
Activated and Depressed Copper Sulfide Minerals.
Minerals, 10(11), 1027. doi: 10.3390/min10111027.
Mu, Y., &Peng, Y. (2023). Maximise pyrite depression
in copper ore flotation using high salinity water.
Minerals Engineering, 196, 108060. doi: 10.1016/j.
mineng.2023.108060.
Newbury, D.E. (2007). Mistakes encountered during auto-
matic peak identification in low beam energy X-ray
microanalysis. Scanning, 29(4), 137–151. doi:10.1002/
sca.20009.
Newbury, D.E. (2009). Mistakes encountered during
automatic peak identification of minor and trace con-
stituents in electron-excited energy dispersive X-ray
microanalysis. Scanning, 91–101. doi: 10.1002/
sca.20151.
Newbury, D.E., &Ritchie, N.W. (2013). Is scanning
electron microscopy/energy dispersive X-ray spec-
trometry (SEM/EDS) quantitative? Scanning, 35(3).
doi:10.1002/sca.21041.
Newbury, D.E., Swyt, C.R., &Myklebust, R.L.
(1995). “Standardless” Quantitative Electron
Probe Microanalysis with Energy-Dispersive X-ray
Spectrometry: Is It Worth the Risk? Analytical Chemistry,
67(11), 1866–1871. doi: 10.1021/ac00107a017v.
Nishimura, M., Ichikawa, K., &Ajima, M. (2016).
Features and applications of Hitachi tabletop
microscope TM3030Plus. Technical magazine of
Electron Microscope and Analytical Instruments.
Retrieved from Hitachi High-Tech Global: https://
www.hitachi-hightech.com/global/en/sinews/
technical_explanation/07071/.
Ralston, J. (1991). Eh and its consequences in sulphide
mineral flotation. Minerals Engineering, 4(7‑11), 859–
878. doi: 10.1016/0892-6875(91)90070-C.
Shahbazi, B., Chelgani, S.C., &Matin, S.S. (2017).
.Prediction of froth flotation responses based on
various conditioning parameters by Random Forest
method. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 529, 936–941. doi: 10.1016/j.
colsurfa.2017.07.013.
Wang, Z., Mu, Y., Zhang, M., Cao, Y., &Li, C. (2024).
Effect of clay crystal structure on froth rheology in flo-
tation. Powder Technology, 435, 119395. doi: 10.1016/j.
powtec.2024.119395.
Watt. (1983). On-Stream Analysis of Metalliferous Ore
Slurries. Nuclear Geophysics, 309–331.
Welsby, S.D., Vianna, S.M., &Franzidis, J.-P. (2010).
Assigning physical significance to floatability com-
ponents. International Journal of Mineral Processing,
97(1–4), 59–67. doi: 10.1016/j.minpro.2010.08.002.
Williams, D.B., Goldstein, J.I., &Fiori, C.E. (1986).
Principles of X-Ray Energy-Dispersive Spectrometry
in the Analytical Electron Microscope. In D.C. Joy,
A.D. Romig, &J.I. Goldstein, Principles of Analytical
Electron Microscopy (pp. 123–153). Boston, MA:
Springer. doi: 10.1007/978-1-4899-2037-9_4.
Wright, F.E. (1942). Methods and Instruments Used in
Mineralogy. American Mineralogist, 27(3), 145–154.
Zhang, G., Ye, G., &Liu, D. (2023). Adsorption study
of fenugreek gum onto pyrite surface: Implications for
chalcopyrite-pyrite flotation separation. Colloids and
Surfaces A: Physicochemical and Engineering Aspects, 677,
Part A, 132404. doi:aa10.1016/j.colsurfa.2023.132404
Previous Page Next Page

Extracted Text (may have errors)

Help

loading