XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3 913
Amankwaa-Kyeremeh, B., Ehrig, K., Greet, C., &Asamoah,
R. (2023). Pulp Chemistry Variables for Gaussian
Process Prediction of Rougher Copper Recovery.
Minerals, 13(6), 731. doi: 10.3390/min13060731.
Amankwaa-Kyeremeh, B., Greet, C., Skinner, W., &
Asamoah, R. (2020). A brief review of pulp chemis-
try parameters in relation to flotation feed variation.
Proceedings of the International Mineral Processing
Congress 2020, (pp. 1855–1863). Cape Town, South
Africa.
Amar, I.B., Roudjane, M., Griguer, H., Miled, A., &
Messaddeq, Y. (2022). The effect of particle size and
water content on XRF measurements of phosphate
slurry. Scientific Reports, 1(17823), 12.
Amini, E., Bradshaw, D.J., &Xie, W. (2016). Influence
of flotation cell hydrodynamics on the flotation
kinetics and scale up, Part 1: Hydrodynamic param-
eter measurements and ore property determination.
Minerals Engineering, 99, 40–51. doi: 10.1016/j.
mineng.2016.09.024.
Amini, E., Bradshaw, D.J., &Xie, W. (2017). Influence of
flotation cell hydrodynamics on the flotation kinetics
and scale up, Part 2: Introducing turbulence parame-
ters to improve predictions. Minerals Engineering, 100,
31–39. doi: 10.1016/j.mineng.2016.10.001.
Amini, E., Xie, W., &Bradshow, D.J. (2016). Enhancement
of scale up capability on Amira P9 flotation model by
incorporating turbulence parameters. International
Journal of Mineral Processing, 156, 52–61. doi:
10.1016/j.minpro.2016.05.001.
Barrette, L., &Turmel, S. (2001). On-line iron-ore slurry
monitoring for real-time process control of pel-
let making processes using laser-induced breakdown
spectroscopy: graphitic vs. total carbon detection.
Spectrochimica Acta Part B: Atomic Spectroscopy, 56(6),
715–723.
Berglund, G. (1991). Pulp chemistry in sulphide mineral
flotation. International Journal of Mineral Processing,
33(1‑4), 21–31. doi: 10.1016/0301-7516(91)90040-P.
Farrokhpay, S., Ndlovu, B., &Bradshaw, D. (2016).
Behaviour of swelling clays versus non-swelling clays
in flotation. Minerals Engineering, 96-97, 59–66. doi:
10.1016/j.mineng.2016.04.011.
Fitzgerald, R., Keil, K., &Heinrich, K.F. (1968). Solid-
State Energy-Dispersion Spectrometer for Electron-
Microprobe X-ray Analysis. Science, 159(3814),
528–530. doi:10.1126/science.159.3814.528.
Forson, P., Zanin, M., Skinner, W., &Asamoah, R. (2022).
Differential flotation of pyrite and Arsenopyrite: Effect
of pulp aeration and the critical importance of collec-
tor concentration. Minerals Engineering, 178, 107421.
doi: 10.1016/j.mineng.2022.107421.
Grey, I.E. (2022). Diffraction Methods in the
Characterization of New Mineral Species. Journal of
Solid State Chemistry, 312, 123239. doi: 10.1016/j.
jssc.2022.123239.
Haavisto, O. (2009). Reflectance Spectrum
Analysis of Mineral Flotation Froth and
Slurries. IFAC Proceedings Volumes, 42(23). doi:
10.3182/20091014-3-CL-4011.00026.
Hołyńska, B., Lankosz, M., Ostachowicz, J., &Wolski,
K. (1985). On-stream XRF measuring system for
ore slurry analysis and particle-size control. The
International Journal of Applied Radiation and Isotopes,
369–373.
Jefferson, M., Yenial-Arslan, U., Evans, C., Curtis-Morar,
C., O’Donnell, R., Parbhakar-Fox, A., &Forbes, E.
(2023). Effect of pyrite textures and composition on
flotation performance. Minerals Engineering, 108234.
doi: 10.1016/j.mineng.2023.108234.
Jeldres, R.I., Uribe, L., Cisternas, L.A., Gutierrez, L., Leiva,
W.H., &Valenzuela, J. (2019). The effect of clay min-
erals on the process of flotation of copper ores -A
critical review. Applied Clay Science, 170, 57–69. doi:
10.1016/j.clay.2019.01.013.
Kelebek, S., Fekete, S., &Wells, P. (1995). Selective depres-
sion of pyrrhotite using sulphur dioxide-diethylene-
triamine reagent combination. Proceedings of the XIX
International Mineral Processing Congress, (pp. 181–
187). San Francisco, California, USA.
Kewe, T., Moffatt, N., Strobos, P., Spuy, D. v., Paine,
A.P., &Keet, K. (2014). Evaluation of the Blue Cube
MQi Slurry Analyser for Application in an Advanced
Control System for the Optimisation of a Gold Sulfide
Flotation Circuit. Townsville, Queensland: 12th Mill
Operators’ Conference 2014.
Khajehzadeh, N., Haavisto, O., &Koresaar, L. (2016).
On-stream and quantitative mineral identification
of tailing slurries using LIBS technique. Minerals
Engineering, 98, 101–109.
Khajehzadeh, N., Haavisto, O., &Koresaar, L. (2017).
On-stream mineral identification of tailing slurries of
an iron ore concentrator using data fusion of LIBS,
reflectance spectroscopy and XRF measurement tech-
niques. Minerals Engineering, 113, 83–94.
Amankwaa-Kyeremeh, B., Ehrig, K., Greet, C., &Asamoah,
R. (2023). Pulp Chemistry Variables for Gaussian
Process Prediction of Rougher Copper Recovery.
Minerals, 13(6), 731. doi: 10.3390/min13060731.
Amankwaa-Kyeremeh, B., Greet, C., Skinner, W., &
Asamoah, R. (2020). A brief review of pulp chemis-
try parameters in relation to flotation feed variation.
Proceedings of the International Mineral Processing
Congress 2020, (pp. 1855–1863). Cape Town, South
Africa.
Amar, I.B., Roudjane, M., Griguer, H., Miled, A., &
Messaddeq, Y. (2022). The effect of particle size and
water content on XRF measurements of phosphate
slurry. Scientific Reports, 1(17823), 12.
Amini, E., Bradshaw, D.J., &Xie, W. (2016). Influence
of flotation cell hydrodynamics on the flotation
kinetics and scale up, Part 1: Hydrodynamic param-
eter measurements and ore property determination.
Minerals Engineering, 99, 40–51. doi: 10.1016/j.
mineng.2016.09.024.
Amini, E., Bradshaw, D.J., &Xie, W. (2017). Influence of
flotation cell hydrodynamics on the flotation kinetics
and scale up, Part 2: Introducing turbulence parame-
ters to improve predictions. Minerals Engineering, 100,
31–39. doi: 10.1016/j.mineng.2016.10.001.
Amini, E., Xie, W., &Bradshow, D.J. (2016). Enhancement
of scale up capability on Amira P9 flotation model by
incorporating turbulence parameters. International
Journal of Mineral Processing, 156, 52–61. doi:
10.1016/j.minpro.2016.05.001.
Barrette, L., &Turmel, S. (2001). On-line iron-ore slurry
monitoring for real-time process control of pel-
let making processes using laser-induced breakdown
spectroscopy: graphitic vs. total carbon detection.
Spectrochimica Acta Part B: Atomic Spectroscopy, 56(6),
715–723.
Berglund, G. (1991). Pulp chemistry in sulphide mineral
flotation. International Journal of Mineral Processing,
33(1‑4), 21–31. doi: 10.1016/0301-7516(91)90040-P.
Farrokhpay, S., Ndlovu, B., &Bradshaw, D. (2016).
Behaviour of swelling clays versus non-swelling clays
in flotation. Minerals Engineering, 96-97, 59–66. doi:
10.1016/j.mineng.2016.04.011.
Fitzgerald, R., Keil, K., &Heinrich, K.F. (1968). Solid-
State Energy-Dispersion Spectrometer for Electron-
Microprobe X-ray Analysis. Science, 159(3814),
528–530. doi:10.1126/science.159.3814.528.
Forson, P., Zanin, M., Skinner, W., &Asamoah, R. (2022).
Differential flotation of pyrite and Arsenopyrite: Effect
of pulp aeration and the critical importance of collec-
tor concentration. Minerals Engineering, 178, 107421.
doi: 10.1016/j.mineng.2022.107421.
Grey, I.E. (2022). Diffraction Methods in the
Characterization of New Mineral Species. Journal of
Solid State Chemistry, 312, 123239. doi: 10.1016/j.
jssc.2022.123239.
Haavisto, O. (2009). Reflectance Spectrum
Analysis of Mineral Flotation Froth and
Slurries. IFAC Proceedings Volumes, 42(23). doi:
10.3182/20091014-3-CL-4011.00026.
Hołyńska, B., Lankosz, M., Ostachowicz, J., &Wolski,
K. (1985). On-stream XRF measuring system for
ore slurry analysis and particle-size control. The
International Journal of Applied Radiation and Isotopes,
369–373.
Jefferson, M., Yenial-Arslan, U., Evans, C., Curtis-Morar,
C., O’Donnell, R., Parbhakar-Fox, A., &Forbes, E.
(2023). Effect of pyrite textures and composition on
flotation performance. Minerals Engineering, 108234.
doi: 10.1016/j.mineng.2023.108234.
Jeldres, R.I., Uribe, L., Cisternas, L.A., Gutierrez, L., Leiva,
W.H., &Valenzuela, J. (2019). The effect of clay min-
erals on the process of flotation of copper ores -A
critical review. Applied Clay Science, 170, 57–69. doi:
10.1016/j.clay.2019.01.013.
Kelebek, S., Fekete, S., &Wells, P. (1995). Selective depres-
sion of pyrrhotite using sulphur dioxide-diethylene-
triamine reagent combination. Proceedings of the XIX
International Mineral Processing Congress, (pp. 181–
187). San Francisco, California, USA.
Kewe, T., Moffatt, N., Strobos, P., Spuy, D. v., Paine,
A.P., &Keet, K. (2014). Evaluation of the Blue Cube
MQi Slurry Analyser for Application in an Advanced
Control System for the Optimisation of a Gold Sulfide
Flotation Circuit. Townsville, Queensland: 12th Mill
Operators’ Conference 2014.
Khajehzadeh, N., Haavisto, O., &Koresaar, L. (2016).
On-stream and quantitative mineral identification
of tailing slurries using LIBS technique. Minerals
Engineering, 98, 101–109.
Khajehzadeh, N., Haavisto, O., &Koresaar, L. (2017).
On-stream mineral identification of tailing slurries of
an iron ore concentrator using data fusion of LIBS,
reflectance spectroscopy and XRF measurement tech-
niques. Minerals Engineering, 113, 83–94.