XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3 691
[7] Mehrabanpour, N., Nezamzadeh-Ejhieh, A.,
Ghattavi, S., et al., 2023. A magnetically separable
clinoptilolite supported CdS-PbS photocatalyst:
Characterization and photocatalytic activity toward
cefotaxime. Applied Surface Science 614: 156252.
[8] Sonmez, B., Baser, E. and Gel, O.Y. 2022.
Photodecolourization of methylene blue by Fe- and
Cdincorporated titania-supported zeolite clinopti-
lolite. Microporous and Mesoporous Materials 340:
112001.
[9] Wu, S., Hu, H., Lin, Y., et al., 2020. Visible light
photocatalytic degradation of tetracycline over TiO2.
Chemical Engineering Journal 382: 122842.
[10] Nezamzadeh-Ejhieh, A. and Khorsandi, S. 2014.
Photocatalytic degradation of 4-nitrophenol with
ZnO supported nano-clinoptilolite zeolite. Journal of
Industrial and Engineering Chemistry 20(3): 937–946.
[11] Hosseinzadeh, G., Ghasemian, N. and Zinatloo-
Ajabshir, S. 2022. TiO2/graphene nanocompos-
ite supported on clinoptilolite nanoplate and its
enhanced visible light photocatalytic activity.
Inorganic Chemistry Communications 136: 109144.
[12] Dou, K., Lu, Y., Wang, R., et al., 2022. (1T/2H)-
MoS2/CoFe2O4 heterojunctions with a unique grape
bunch structure for photocatalysis of organic dyes
driven by visible light. Applied Surface Science 605:
154751.
[13] Sun, B., Huang, C., Yang, C., et al., 2024. Atomic
interfacial charge and energy transfer paths at MoS2/
Pd bonded defect-rich BiOCl interfaces for efficient
photocatalysis. Applied Catalysis B: Environmental
345: 123720.
[14] Hernandez, M.A., Salgado, M.A., Portillo, R., et
al., 2021. Nanoparticles of γ-Sitoesterol and Ag on
Clinoptilolite Zeolites. Journal of Nanomaterials
2021: 9959552.
[15] Zhang, X., Shao, C., Li, X., et al., 2016. 3D MoS2
nanosheet/TiO2 nanofiber heterostructures with
enhanced photocatalytic activity under UV irradia-
tion. Journal of Alloys and Compounds 686: 137144.
[16] Hu, X., Sun, Z., Song, J., et al., 2019. Synthesis of
novel ternary heterogeneous BiOCl/TiO2/sepiolite
composite with enhanced visible-light-induced pho-
tocatalytic activity towards tetracycline. Journal of
Colloid and Interface Science 533: 238–250.
[17] Zhang, G., Sun, Z., Hu, X., et al., 2017. Synthesis
of BiOCl/TiO2–zeolite composite with enhanced vis-
ible light photoactivity. Journal of the Taiwan Institute
of Chemical Engineers 81: 435–444.
[18] Zhang, L., Zhang, J., Zhang, W., et al., 2015.
Photocatalytic activity of attapulgite–BiOCl–TiO2
toward degradation of methyl orange under UV and
visible light irradiation. Materials Research Bulletin
66: 109–114.
[19] Liu, H., Hu, C., Zhai, H., et al., 2017. Fabrication of
In2O3/ZnO@Ag nanowire ternary composites with
enhanced visible light photocatalytic activity. RSC
Advances 7(59): 37220–37229.
[20] Tun, P., Wang, K., Naing, H., et al., 2019. Facile
preparation of visible-light-responsive kaolinsup-
ported Ag@AgBr composites and their enhanced
photocatalytic properties. Applied Clay Science 175:
76–85.
[7] Mehrabanpour, N., Nezamzadeh-Ejhieh, A.,
Ghattavi, S., et al., 2023. A magnetically separable
clinoptilolite supported CdS-PbS photocatalyst:
Characterization and photocatalytic activity toward
cefotaxime. Applied Surface Science 614: 156252.
[8] Sonmez, B., Baser, E. and Gel, O.Y. 2022.
Photodecolourization of methylene blue by Fe- and
Cdincorporated titania-supported zeolite clinopti-
lolite. Microporous and Mesoporous Materials 340:
112001.
[9] Wu, S., Hu, H., Lin, Y., et al., 2020. Visible light
photocatalytic degradation of tetracycline over TiO2.
Chemical Engineering Journal 382: 122842.
[10] Nezamzadeh-Ejhieh, A. and Khorsandi, S. 2014.
Photocatalytic degradation of 4-nitrophenol with
ZnO supported nano-clinoptilolite zeolite. Journal of
Industrial and Engineering Chemistry 20(3): 937–946.
[11] Hosseinzadeh, G., Ghasemian, N. and Zinatloo-
Ajabshir, S. 2022. TiO2/graphene nanocompos-
ite supported on clinoptilolite nanoplate and its
enhanced visible light photocatalytic activity.
Inorganic Chemistry Communications 136: 109144.
[12] Dou, K., Lu, Y., Wang, R., et al., 2022. (1T/2H)-
MoS2/CoFe2O4 heterojunctions with a unique grape
bunch structure for photocatalysis of organic dyes
driven by visible light. Applied Surface Science 605:
154751.
[13] Sun, B., Huang, C., Yang, C., et al., 2024. Atomic
interfacial charge and energy transfer paths at MoS2/
Pd bonded defect-rich BiOCl interfaces for efficient
photocatalysis. Applied Catalysis B: Environmental
345: 123720.
[14] Hernandez, M.A., Salgado, M.A., Portillo, R., et
al., 2021. Nanoparticles of γ-Sitoesterol and Ag on
Clinoptilolite Zeolites. Journal of Nanomaterials
2021: 9959552.
[15] Zhang, X., Shao, C., Li, X., et al., 2016. 3D MoS2
nanosheet/TiO2 nanofiber heterostructures with
enhanced photocatalytic activity under UV irradia-
tion. Journal of Alloys and Compounds 686: 137144.
[16] Hu, X., Sun, Z., Song, J., et al., 2019. Synthesis of
novel ternary heterogeneous BiOCl/TiO2/sepiolite
composite with enhanced visible-light-induced pho-
tocatalytic activity towards tetracycline. Journal of
Colloid and Interface Science 533: 238–250.
[17] Zhang, G., Sun, Z., Hu, X., et al., 2017. Synthesis
of BiOCl/TiO2–zeolite composite with enhanced vis-
ible light photoactivity. Journal of the Taiwan Institute
of Chemical Engineers 81: 435–444.
[18] Zhang, L., Zhang, J., Zhang, W., et al., 2015.
Photocatalytic activity of attapulgite–BiOCl–TiO2
toward degradation of methyl orange under UV and
visible light irradiation. Materials Research Bulletin
66: 109–114.
[19] Liu, H., Hu, C., Zhai, H., et al., 2017. Fabrication of
In2O3/ZnO@Ag nanowire ternary composites with
enhanced visible light photocatalytic activity. RSC
Advances 7(59): 37220–37229.
[20] Tun, P., Wang, K., Naing, H., et al., 2019. Facile
preparation of visible-light-responsive kaolinsup-
ported Ag@AgBr composites and their enhanced
photocatalytic properties. Applied Clay Science 175:
76–85.