XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3 613
[11] Wang B, Peng Y. The effect of saline water on mineral
flotation—A critical review. Miner Eng. 2014 66–
68:13–24. doi: 10.1016/j.mineng.2014.04.017.
[12] Bunce NJ, Chartrand M, Keech P. Electrochemical
Treatment of Acidic Aqueous Ferrous Sulfate and
Copper Sulfate as Models for Acid Mine Drainage.
Water Res. 2001 35(18):4410–6. doi: 10.1016
/S0043-1354(01)00170-1.
[13] Ikumapayi F, Rao KH. Recycling Process Water in
Complex Sulfide Ore Flotation: Effect of Calcium
and Sulfate on Sulfide Minerals Recovery. Miner
Process Extr Metall Rev. 2015 36(1):45–64. doi:
10.1080/08827508.2013.868346.
[14] Hassas BV, Rezaee M, Pisupati SV. Effect of vari-
ous ligands on the selective precipitation of critical
and rare earth elements from acid mine drainage.
Chemosphere. 2021 280:130684. doi: 10.1016/j.
chemosphere.2021.130684.
[15] Prokkola H, Nurmesniemi E-T, Lassi U. Removal
of Metals by Sulphide Precipitation Using Na2S and
HS−-Solution. ChemEngineering. 2020 4(3):51.
[16] Zhang W, Avdibegović D, Koivula R, Hatanpää
T, Hietala S, Regadío M, et al. Titanium alkyl-
phosphate functionalised mesoporous silica for
enhanced uptake of rare-earth ions. J Mater Chem A.
2017 5(45):23805–14. doi: 10.1039/C7TA08127H.
[17] Youcai Z, Chenglong Z. Electrowinning of Zinc and
Lead from Alkaline Solutions. In: Youcai Z, Chenglong
Z, editors. Pollution Control and Resource Reuse
for Alkaline Hydrometallurgy of Amphoteric Metal
Hazardous Wastes. Cham: Springer International
Publishing 2017. p. 171–261.
[18] Gorgievski M, Božić D, Stanković V, Bogdanović
G. Copper electrowinning from acid mine drain-
age: A case study from the closed mine “Cerovo.” J
Hazard Mater. 2009 170(2):716–21. doi: 10.1016
/j.jhazmat.2009.04.135.
[19] Yasri NG, Gunasekaran S. Electrochemical
Technologies for Environmental Remediation. In:
Anjum NA, Gill SS, Tuteja N, editors. Enhancing
Cleanup of Environmental Pollutants. Springer
e-book 2017. p. 5–73.
[20] Yang L, Hu W, Chang Z, Liu T, Fang D, Shao P, et
al. Electrochemical recovery and high value-added
reutilization of heavy metal ions from wastewater:
Recent advances and future trends. Environment
International. 2021 152:106512. doi: 10.1016
/j.envint.2021.106512.
[21] Ayres JL, Fedkiw PS. Abatement of Heavy Metals in
Industrial Effulents by a Catalized, Eletrochemical
Removal Scheme. Report (Water Resources Research
Institute of the University of North Carolina)
2071983.
[22] Hong J, Xu Z, Li D, Guo X, Yu D, Tian Q. A pilot
study: Efficient electrowinning of tellurium from
alkaline solution by cyclone electrowinning tech-
nology. Hydrometallurgy. 2020 196:105429. doi:
10.1016/j.hydromet.2020.105429.
[23] Wu T, Liu C, Kong B, Sun J, Gong YJ, Liu K, et
al. Amidoxime-Functionalized Macroporous Carbon
Self-Refreshed Electrode Materials for Rapid and
High-Capacity Removal of Heavy Metal from Water.
ACS Cent Sci. 2019 5(4):719–26. doi: 10.1021
/acscentsci.9b00130.
[24] Liu C, Wu T, Hsu PC, Xie J, Zhao J, Liu K, et al.
Direct/Alternating Current Electrochemical Method
for Removing and Recovering Heavy Metal from
Water Using Graphene Oxide Electrode. ACS Nano.
2019 13(6):6431–7. doi: 10.1021/acsnano.8b09301.
[25] Chernyshova I, Suup M, Kihlblom C, Kota
HR, Ponnurangam S. Green mining of min-
ing water using surface e-precipitation. Sep
Purif Technol. 2023 327:125001. doi: 10.1016
/j.seppur.2023.125001.
[26] Chernyshova I, Bakuska D, Ponnurangam S.
Selective recovery of critical and toxic elements
from their low concentrated solutions using sur-
face-based electrochemical separation methods In:
Chernyshova I, Ponnurangam S, Liu Q, editors.
Multidisciplinary Advances in Efficient Separation
Processes. Washington, DC: ACS Publications 2020.
p. 115–65.
[27] Chernyshova IV, Ponnurangam S. Overcoming
Diffusion Mass Transfer Barriers by Surface Electro-
Precipitation (SEP). submitted. 2024.
[28] Vecino X, Reig M, López J, Valderrama C, Cortina
JL. Valorisation options for Zn and Cu recovery from
metal influenced acid mine waters through selective
precipitation and ion-exchange processes: promo-
tion of on-site/off-site management options. Journal
of Environmental Management. 2021 283:112004.
doi: 10.1016/j.jenvman.2021.112004.
[11] Wang B, Peng Y. The effect of saline water on mineral
flotation—A critical review. Miner Eng. 2014 66–
68:13–24. doi: 10.1016/j.mineng.2014.04.017.
[12] Bunce NJ, Chartrand M, Keech P. Electrochemical
Treatment of Acidic Aqueous Ferrous Sulfate and
Copper Sulfate as Models for Acid Mine Drainage.
Water Res. 2001 35(18):4410–6. doi: 10.1016
/S0043-1354(01)00170-1.
[13] Ikumapayi F, Rao KH. Recycling Process Water in
Complex Sulfide Ore Flotation: Effect of Calcium
and Sulfate on Sulfide Minerals Recovery. Miner
Process Extr Metall Rev. 2015 36(1):45–64. doi:
10.1080/08827508.2013.868346.
[14] Hassas BV, Rezaee M, Pisupati SV. Effect of vari-
ous ligands on the selective precipitation of critical
and rare earth elements from acid mine drainage.
Chemosphere. 2021 280:130684. doi: 10.1016/j.
chemosphere.2021.130684.
[15] Prokkola H, Nurmesniemi E-T, Lassi U. Removal
of Metals by Sulphide Precipitation Using Na2S and
HS−-Solution. ChemEngineering. 2020 4(3):51.
[16] Zhang W, Avdibegović D, Koivula R, Hatanpää
T, Hietala S, Regadío M, et al. Titanium alkyl-
phosphate functionalised mesoporous silica for
enhanced uptake of rare-earth ions. J Mater Chem A.
2017 5(45):23805–14. doi: 10.1039/C7TA08127H.
[17] Youcai Z, Chenglong Z. Electrowinning of Zinc and
Lead from Alkaline Solutions. In: Youcai Z, Chenglong
Z, editors. Pollution Control and Resource Reuse
for Alkaline Hydrometallurgy of Amphoteric Metal
Hazardous Wastes. Cham: Springer International
Publishing 2017. p. 171–261.
[18] Gorgievski M, Božić D, Stanković V, Bogdanović
G. Copper electrowinning from acid mine drain-
age: A case study from the closed mine “Cerovo.” J
Hazard Mater. 2009 170(2):716–21. doi: 10.1016
/j.jhazmat.2009.04.135.
[19] Yasri NG, Gunasekaran S. Electrochemical
Technologies for Environmental Remediation. In:
Anjum NA, Gill SS, Tuteja N, editors. Enhancing
Cleanup of Environmental Pollutants. Springer
e-book 2017. p. 5–73.
[20] Yang L, Hu W, Chang Z, Liu T, Fang D, Shao P, et
al. Electrochemical recovery and high value-added
reutilization of heavy metal ions from wastewater:
Recent advances and future trends. Environment
International. 2021 152:106512. doi: 10.1016
/j.envint.2021.106512.
[21] Ayres JL, Fedkiw PS. Abatement of Heavy Metals in
Industrial Effulents by a Catalized, Eletrochemical
Removal Scheme. Report (Water Resources Research
Institute of the University of North Carolina)
2071983.
[22] Hong J, Xu Z, Li D, Guo X, Yu D, Tian Q. A pilot
study: Efficient electrowinning of tellurium from
alkaline solution by cyclone electrowinning tech-
nology. Hydrometallurgy. 2020 196:105429. doi:
10.1016/j.hydromet.2020.105429.
[23] Wu T, Liu C, Kong B, Sun J, Gong YJ, Liu K, et
al. Amidoxime-Functionalized Macroporous Carbon
Self-Refreshed Electrode Materials for Rapid and
High-Capacity Removal of Heavy Metal from Water.
ACS Cent Sci. 2019 5(4):719–26. doi: 10.1021
/acscentsci.9b00130.
[24] Liu C, Wu T, Hsu PC, Xie J, Zhao J, Liu K, et al.
Direct/Alternating Current Electrochemical Method
for Removing and Recovering Heavy Metal from
Water Using Graphene Oxide Electrode. ACS Nano.
2019 13(6):6431–7. doi: 10.1021/acsnano.8b09301.
[25] Chernyshova I, Suup M, Kihlblom C, Kota
HR, Ponnurangam S. Green mining of min-
ing water using surface e-precipitation. Sep
Purif Technol. 2023 327:125001. doi: 10.1016
/j.seppur.2023.125001.
[26] Chernyshova I, Bakuska D, Ponnurangam S.
Selective recovery of critical and toxic elements
from their low concentrated solutions using sur-
face-based electrochemical separation methods In:
Chernyshova I, Ponnurangam S, Liu Q, editors.
Multidisciplinary Advances in Efficient Separation
Processes. Washington, DC: ACS Publications 2020.
p. 115–65.
[27] Chernyshova IV, Ponnurangam S. Overcoming
Diffusion Mass Transfer Barriers by Surface Electro-
Precipitation (SEP). submitted. 2024.
[28] Vecino X, Reig M, López J, Valderrama C, Cortina
JL. Valorisation options for Zn and Cu recovery from
metal influenced acid mine waters through selective
precipitation and ion-exchange processes: promo-
tion of on-site/off-site management options. Journal
of Environmental Management. 2021 283:112004.
doi: 10.1016/j.jenvman.2021.112004.