3670 XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3
Gao L., Liu Z., Pan Y., Ge Y., Feng C., Chu M., and
Tang J. 2019. Separation and Recovery of Iron and
Nickel from Low-Grade Laterite Nickel Ore Using
Reduction Roasting at Rotary Kiln Followed by
Magnetic Separation Technique. Min. Metall. Explor.
36: 375–384.
Gardner L. 2019. Stability and design of stainless steel
structures Review and outlook. Thin-Walled Struct.
141: 208–216.
Ghosh A., and Chatterjee A. 2008. Ironmaking and
Steelmaking: Theory and Practice. PHI Learning Pvt.
Ltd.
Kanungo S. B., and Mishra S. K. 1997. Kinetics of chlo-
ridization of nickel-bearing lateritic iron ore by hydro-
gen chloride gas. Metall. Mater. Trans. B 28: 389–399.
Monsen B., Thomassen E., Brakstad I., Ringdalen E., and
Hoegass P. H. 2015. Characterization of DR Pellets for
DRI Applications. AISTech 2015, .
Nayak D., Ray N., Dash N., Rath S. S., and Biswal S.
K. 2020a. Reduction behaviour of Odisha Sands
Complex, India ilmenite-coke composite pellets. J.
Cent. South Univ. 27: 1678–1690.
Nayak D., Ray N., Dash N., Rath S. S., Pati S., and De
P. S. 2021a. An Optimal Route for the Preparation
of Metallized Composite Pellets from Ilmenite
Concentrate. J. Sustain. Metall. 7: 1102–1115.
Nayak D., Ray N., Dash N., Rath S. S., Pati S., and De P.
S. 2021b. Induration aspects of low-grade ilmenite pel-
lets: Optimization of oxidation parameters and char-
acterization for direct reduction application. Powder
Technol. 380: 408–420.
Nayak D., Roy S. K., Dash N., and Rath S. S. 2020b.
Investigation on the Coal-Based Direct Reduction
of Mill Scale Pellets: Statistical Modeling and
Characterization Studies. Trans. Indian Inst. Met. 73:
691–701.
Nayak D., Sahu N., Sahu D. K., Dash N., Tripathy S. K.,
Angadi S., and Kapure G. U. 2023. Pelletization of a
Low-Grade Indian Chromite Overburden: Optimizing
the Induration Parameters and Understanding the
Consolidation Behavior. Metall. Mater. Trans. B.
Pandey N., Tripathy S. K., Patra S. K., and Jha G. 2023.
Recent Progress in Hydrometallurgical Processing
of Nickel Lateritic Ore. Trans. Indian Inst. Met. 76:
11–30.
Pilla G., Dishwar R. K., Agrawal S., Mandal A. K., Sahu N.
D., and Sinha O. P. 2020. Feasibility of nickel extrac-
tion from Indian chromite overburden by solid state
reduction and smelting route. J. Min. Metall. Sect. B
Metall. 56: 229–235.
Prasad S., Kumar M., and Randhawa N. S. 2021. Processing
of Chromite Overburden by Soda Roasting to Recover
Chromium as Sodium Chromate. Trans. Indian Inst.
Met. 74: 2221–2230.
Rabi M., Shamass R., and Cashell K. A. 2022. Structural
performance of stainless steel reinforced concrete
members: A review. Constr. Build. Mater. 325: 126673.
Sahu S. N., Meikap B. C., and Biswal S. K. 2023. Reduction
in fossil fuel consumption by exploiting separation of
refractory grade oolitic iron ores using black plum
leaf litter via magnetization roasting &pelletization
a small step toward decarbonization &sustainability.
Sep. Purif. Technol. 311: 123327.
Swamy Y. V., Murthy B. V. R., and Reddy B. R. 2000.
Extraction of nickel from chromitiferous overburden
by roasting with a CO-CO2-N2 gas mixture. Min.
Metall. Explor. 17: 223–227.
Takano C., Zambrano A. P., Nogueira A. E. A., Mourao M.
B., and Iguchi Y. 2007. Chromites Reduction Reaction
Mechanisms in Carbon–Chromites Composite
Agglomerates at 1773 K. ISIJ Int. 47: 1585–1589.
Wang L., X., Liu M., You Z., X., and Bai C. 2018.
Preparation of ferronickel from nickel laterite via coal-
based reduction followed by magnetic separation. Int.
J. Miner. Metall. Mater. 25: 744–751.
Xiao J., Xiong W., Zou K., Chen T., Li H., and Wang Z.
2021. Extraction of nickel from magnesia–nickel sili-
cate ore. J. Sustain. Metall. 7: 642–652.
Xue Y., Zhu D., Pan J., Li G., and Lv X. 2023. Reduction
of Carbon Footprint Through Hybrid Sintering of
Low-Grade Limonitic Nickel Laterite and Chromite
Ore. J. Sustain. Metall. 9: 648–664.
Zhu D. Q., Cui Y., Vining K., Hapugoda S., Douglas J.,
Pan J., and Zheng G. L. 2012. Upgrading low nickel
content laterite ores using selective reduction followed
by magnetic separation. Int. J. Miner. Process. 106: 1–7.
Previous Page Next Page