3376 XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3
7. Liu, J., et al., Unlocking the Failure Mechanism of
Solid State Lithium Metal Batteries. Advanced Energy
Materials, 2022. 12(4): p. 2100748. doi: 10.1002/aenm
.202100748.
8. USGS, Mineral commodity summaries 2022, in Mineral
Commodity Summaries. 2022: Reston, VA. p. 202. doi:
10.3133/mcs2022.
9. Meshram, P., B.D. Pandey, and T.R. Mankhand,
Extraction of lithium from primary and secondary sources
by pre-treatment, leaching and separation: A comprehen-
sive review. Hydrometallurgy, 2014. 150: p. 192–208.
doi: 10.1016/j.hydromet.2014.10.012.
10. Benson, T.R., et al., Lithium enrichment in intracon-
tinental rhyolite magmas leads to Li deposits in caldera
basins. Nat Commun, 2017. 8(1): p. 270. doi: 10.1038
/s41467-017-00234-y.
11. Kesler, S.E., et al., Global lithium resources: Relative
importance of pegmatite, brine and other deposits. Ore
Geology Reviews, 2012. 48: p. 55–69. doi: /10.1016
/j.oregeorev.2012.05.006.
12. Li, H., J. Eksteen, and G. Kuang, Recovery of lithium
from mineral resources: State-of-the-art and perspectives –
A review. Hydrometallurgy, 2019. 189: p. 105129. doi:
10.1016/j.hydromet.2019.105129.
13. Hanjie, W., et al., Carbonate-hosted clay-type lith-
ium deposit and its prospecting significance. Chinese
Science Bulletin, 2020. 65: p. 53–59. doi: 10.1360
/TB-2019-0179.
14. Castor, S.B. and C.D. Henry, Lithium-Rich Claystone
in the McDermitt Caldera, Nevada, USA: Geologic,
Mineralogical, and Geochemical Characteristics and
Possible Origin. Minerals, 2020. 10(1): p. 68.
15. Xie, R., et al., Review of the research on the develop-
ment and utilization of clay-type lithium resources.
Particuology, 2024. 87: p. 46–53. doi: 10.1016/j.partic
.2023.07.009.
16. Glanzman, R.K., J.H. McCarthy, and J.J. Rytuba,
Lithium in the McDermitt Caldera, Nevada and
Oregon, in Lithium Needs and Resources, S.S. Penner,
Editor. 1978, Pergamon. p. 347–353. doi: 10.1016
/B978-0-08-022733-7.50019-8.
17. Gu, H., et al., Leaching efficiency of sulfuric acid on selec-
tive lithium leachability from bauxitic claystone. Minerals
Engineering, 2020. 145. doi: 10.1016/j.mineng
.2019.106076.
18. Chen, M., et al., Cobalt and lithium leaching from waste
lithium ion batteries by glycine. Journal of Power Sources,
2021. 482: p. 228942. doi: 10.1016/j.jpowsour
.2020.228942.
19. Lin, L., Z. Lu, and W. Zhang, Recovery of lithium and
cobalt from spent Lithium- Ion batteries using organic
aqua regia (OAR): Assessment of leaching kinetics and
global warming potentials. Resources, Conservation
and Recycling, 2021. 167: p. 105416. doi: 10.1016
/j.resconrec.2021.105416.
20. Golmohammadzadeh, R., F. Rashchi, and E. Vahidi,
Recovery of lithium and cobalt from spent lithium-ion
batteries using organic acids: Process optimization and
kinetic aspects. Waste Management, 2017. 64: p. 244–
254. doi: 10.1016/j.wasman.2017.03.037.
21. Meshram, P., et al., Environmental impact of spent
lithium ion batteries and green recycling perspectives by
organic acids – A review. Chemosphere, 2020. 242:
p. 125291. doi: 10.1016/j.chemosphere.2019.125291.
22. Li, L., et al., Ascorbic-acid-assisted recovery of cobalt
and lithium from spent Li-ion batteries. Journal of
Power Sources, 2012. 218: p. 21–27. doi: 10.1016/j.
jpowsour.2012.06.068.
23. Horeh, N.B., S.M. Mousavi, and S.A. Shojaosadati,
Bioleaching of valuable metals from spent lithium-ion
mobile phone batteries using Aspergillus niger. Journal of
Power Sources, 2016. 320: p. 257–266. doi: 10.1016
/j.jpowsour.2016.04.104.
24. Owusu, C., E.A. Mends, and G. Acquah, Enhancing
the physical qualities of activated carbon produced from
palm kernel shell via response surface methodology—pro-
cess variable optimization. Biomass Conversion and
Biorefinery, 2022. doi: 10.1007/s13399-022-03595-7.
25. Li, L., et al., Process for recycling mixed-cathode materi-
als from spent lithium-ion batteries and kinetics of leach-
ing. Waste Management, 2018. 71: p. 362–371. doi:
10.1016/j.wasman.2017.10.028.
26. Urbańska, W., Recovery of Co, Li, and Ni from Spent
Li-Ion Batteries by the Inorganic and/or Organic Reducer
Assisted Leaching Method. Minerals, 2020. 10(6):
p. 555.
27. Li, L., et al., Economical recycling process for spent lith-
ium-ion batteries and macro- and micro-scale mechanistic
study. Journal of Power Sources, 2018. 377: p. 70–79.
doi: 10.1016/j.jpowsour.2017.12.006.
28. Chen, X., et al., Sustainable Recovery of Metals from
Spent Lithium-Ion Batteries: A Green Process. ACS
Sustainable Chemistry &Engineering, 2015. 3(12):
p. 3104–3113. doi: 10.1021/acssuschemeng.5b01000.
29. Xie, Y., et al., Recycling Strategy toward Efficient and Green
Lithium Leaching from Coal-Based Lithium Ores Enabled
by Solubility Engineering and Reusable Solid Acid. ACS
Sustainable Chemistry &Engineering, 2023. 11(7):
p. 2910–2916. doi: 10.1021/acssuschemeng.2c06301.
7. Liu, J., et al., Unlocking the Failure Mechanism of
Solid State Lithium Metal Batteries. Advanced Energy
Materials, 2022. 12(4): p. 2100748. doi: 10.1002/aenm
.202100748.
8. USGS, Mineral commodity summaries 2022, in Mineral
Commodity Summaries. 2022: Reston, VA. p. 202. doi:
10.3133/mcs2022.
9. Meshram, P., B.D. Pandey, and T.R. Mankhand,
Extraction of lithium from primary and secondary sources
by pre-treatment, leaching and separation: A comprehen-
sive review. Hydrometallurgy, 2014. 150: p. 192–208.
doi: 10.1016/j.hydromet.2014.10.012.
10. Benson, T.R., et al., Lithium enrichment in intracon-
tinental rhyolite magmas leads to Li deposits in caldera
basins. Nat Commun, 2017. 8(1): p. 270. doi: 10.1038
/s41467-017-00234-y.
11. Kesler, S.E., et al., Global lithium resources: Relative
importance of pegmatite, brine and other deposits. Ore
Geology Reviews, 2012. 48: p. 55–69. doi: /10.1016
/j.oregeorev.2012.05.006.
12. Li, H., J. Eksteen, and G. Kuang, Recovery of lithium
from mineral resources: State-of-the-art and perspectives –
A review. Hydrometallurgy, 2019. 189: p. 105129. doi:
10.1016/j.hydromet.2019.105129.
13. Hanjie, W., et al., Carbonate-hosted clay-type lith-
ium deposit and its prospecting significance. Chinese
Science Bulletin, 2020. 65: p. 53–59. doi: 10.1360
/TB-2019-0179.
14. Castor, S.B. and C.D. Henry, Lithium-Rich Claystone
in the McDermitt Caldera, Nevada, USA: Geologic,
Mineralogical, and Geochemical Characteristics and
Possible Origin. Minerals, 2020. 10(1): p. 68.
15. Xie, R., et al., Review of the research on the develop-
ment and utilization of clay-type lithium resources.
Particuology, 2024. 87: p. 46–53. doi: 10.1016/j.partic
.2023.07.009.
16. Glanzman, R.K., J.H. McCarthy, and J.J. Rytuba,
Lithium in the McDermitt Caldera, Nevada and
Oregon, in Lithium Needs and Resources, S.S. Penner,
Editor. 1978, Pergamon. p. 347–353. doi: 10.1016
/B978-0-08-022733-7.50019-8.
17. Gu, H., et al., Leaching efficiency of sulfuric acid on selec-
tive lithium leachability from bauxitic claystone. Minerals
Engineering, 2020. 145. doi: 10.1016/j.mineng
.2019.106076.
18. Chen, M., et al., Cobalt and lithium leaching from waste
lithium ion batteries by glycine. Journal of Power Sources,
2021. 482: p. 228942. doi: 10.1016/j.jpowsour
.2020.228942.
19. Lin, L., Z. Lu, and W. Zhang, Recovery of lithium and
cobalt from spent Lithium- Ion batteries using organic
aqua regia (OAR): Assessment of leaching kinetics and
global warming potentials. Resources, Conservation
and Recycling, 2021. 167: p. 105416. doi: 10.1016
/j.resconrec.2021.105416.
20. Golmohammadzadeh, R., F. Rashchi, and E. Vahidi,
Recovery of lithium and cobalt from spent lithium-ion
batteries using organic acids: Process optimization and
kinetic aspects. Waste Management, 2017. 64: p. 244–
254. doi: 10.1016/j.wasman.2017.03.037.
21. Meshram, P., et al., Environmental impact of spent
lithium ion batteries and green recycling perspectives by
organic acids – A review. Chemosphere, 2020. 242:
p. 125291. doi: 10.1016/j.chemosphere.2019.125291.
22. Li, L., et al., Ascorbic-acid-assisted recovery of cobalt
and lithium from spent Li-ion batteries. Journal of
Power Sources, 2012. 218: p. 21–27. doi: 10.1016/j.
jpowsour.2012.06.068.
23. Horeh, N.B., S.M. Mousavi, and S.A. Shojaosadati,
Bioleaching of valuable metals from spent lithium-ion
mobile phone batteries using Aspergillus niger. Journal of
Power Sources, 2016. 320: p. 257–266. doi: 10.1016
/j.jpowsour.2016.04.104.
24. Owusu, C., E.A. Mends, and G. Acquah, Enhancing
the physical qualities of activated carbon produced from
palm kernel shell via response surface methodology—pro-
cess variable optimization. Biomass Conversion and
Biorefinery, 2022. doi: 10.1007/s13399-022-03595-7.
25. Li, L., et al., Process for recycling mixed-cathode materi-
als from spent lithium-ion batteries and kinetics of leach-
ing. Waste Management, 2018. 71: p. 362–371. doi:
10.1016/j.wasman.2017.10.028.
26. Urbańska, W., Recovery of Co, Li, and Ni from Spent
Li-Ion Batteries by the Inorganic and/or Organic Reducer
Assisted Leaching Method. Minerals, 2020. 10(6):
p. 555.
27. Li, L., et al., Economical recycling process for spent lith-
ium-ion batteries and macro- and micro-scale mechanistic
study. Journal of Power Sources, 2018. 377: p. 70–79.
doi: 10.1016/j.jpowsour.2017.12.006.
28. Chen, X., et al., Sustainable Recovery of Metals from
Spent Lithium-Ion Batteries: A Green Process. ACS
Sustainable Chemistry &Engineering, 2015. 3(12):
p. 3104–3113. doi: 10.1021/acssuschemeng.5b01000.
29. Xie, Y., et al., Recycling Strategy toward Efficient and Green
Lithium Leaching from Coal-Based Lithium Ores Enabled
by Solubility Engineering and Reusable Solid Acid. ACS
Sustainable Chemistry &Engineering, 2023. 11(7):
p. 2910–2916. doi: 10.1021/acssuschemeng.2c06301.