XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3 3259
REFERENCES
Ahn, S., &Rudolph, M. (2024). Development of Fine
Particle Mechanical Separation Processes with
Representative Catalyst Materials for Recycling
PEM Water Electrolyzers Exploiting their Wetting
Characteristics. ChemCatChem, 16(1), e202300931.
doi: 10.1002/cctc.202300931.
Andersen, S. M., &Grahl-Madsen, L. (2016). Interface
contribution to the electrode performance of proton
exchange membrane fuel cells – Impact of the iono-
mer. International Journal of Hydrogen Energy, 41(3),
1892–1901. doi: 10.1016/j.ijhydene.2015.11.101.
Carmo, M., Fritz, D. L., Mergel, J., &Stolten, D. (2013).
A comprehensive review on PEM water electroly-
sis. International Journal of Hydrogen Energy, 38(12),
4901–4934. doi: 10.1016/j.ijhydene.2013.01.151.
Devrim, Y. (2014). Preparation and testing of Nafion/
titanium dioxide nanocomposite membrane electrode
assembly by ultrasonic coating technique. Journal
of Applied Polymer Science, 131(15). doi: 10.1002
/app.40541.
European Commission, Smes, Grohol, M., &Veeh, C.
(2023). Study on the critical raw materials for the EU
2023 :final report: Publications Office of the European
Union.
GÜLGÖNÜL, İ. (2019). Zeta potential of Teflon in pres-
ence of monovalent and divalent ions. Physicochemical
Problems of Mineral Processing, 55(3), 792–801. doi:
10.5277/ppmp19014.
Leistner, T., Müller, M., Erler, J. V., Rudolph, M., &
Peuker, U. A. (2014). Selective Separation of Ultrafine
Particles Using Two‐Liquid Flotation. Chemie
Ingenieur Technik, 86(6), 831–839. doi: 10.1002/cite
.201400011.
Olbrich, W., Kadyk, T., Sauter, U., &Eikerling, M. (2022).
Review—Wetting Phenomena in Catalyst Layers
of PEM Fuel Cells: Novel Approaches for Modeling
and Materials Research. Journal of the Electrochemical
Society, 169(5), 054521. doi: 10.1149/1945-7111
/ac6e8b.
Scheepers, F., Stähler, A., Stähler, M., Carmo, M.,
Lehnert, W., &Stolten, D. (2018). Layer Formation
from Polymer Carbon-Black Dispersions. Coatings,
8(12). Retrieved from doi: 10.3390/coatings8120450.
Schneider, C. A., Rasband, W. S., &Eliceiri, K. W.
(2012). NIH Image to ImageJ: 25 years of image
analysis. Nature Methods, 9(7), 671–675. doi: 10.1038
/nmeth.2089.
Schuetzner, W., &Kenndler, E. (1992). Electrophoresis
in synthetic organic polymer capillaries: variation of
electroosmotic velocity and. zeta. potential with pH
and solvent composition. Analytical Chemistry, 64(17),
1991–1995.
Vol’fkovich, Y. M., Sosenkin, V. E., &Nikol’skaya, N. F.
(2010). Hydrophilic-hydrophobic and sorption prop-
erties of the catalyst layers of electrodes in a proton-
exchange membrane fuel cell: A stage-by-stage study.
Russian Journal of Electrochemistry, 46(4), 438–449.
doi: 10.1134/S1023193510040099.
Zhou, L.-F., Yang, D., Du, T., Gong, H., &Luo, W.-B.
(2020). The Current Process for the Recycling of Spent
Lithium Ion Batteries. Frontiers in Chemistry, 8. doi:
10.3389/fchem.2020.578044.
REFERENCES
Ahn, S., &Rudolph, M. (2024). Development of Fine
Particle Mechanical Separation Processes with
Representative Catalyst Materials for Recycling
PEM Water Electrolyzers Exploiting their Wetting
Characteristics. ChemCatChem, 16(1), e202300931.
doi: 10.1002/cctc.202300931.
Andersen, S. M., &Grahl-Madsen, L. (2016). Interface
contribution to the electrode performance of proton
exchange membrane fuel cells – Impact of the iono-
mer. International Journal of Hydrogen Energy, 41(3),
1892–1901. doi: 10.1016/j.ijhydene.2015.11.101.
Carmo, M., Fritz, D. L., Mergel, J., &Stolten, D. (2013).
A comprehensive review on PEM water electroly-
sis. International Journal of Hydrogen Energy, 38(12),
4901–4934. doi: 10.1016/j.ijhydene.2013.01.151.
Devrim, Y. (2014). Preparation and testing of Nafion/
titanium dioxide nanocomposite membrane electrode
assembly by ultrasonic coating technique. Journal
of Applied Polymer Science, 131(15). doi: 10.1002
/app.40541.
European Commission, Smes, Grohol, M., &Veeh, C.
(2023). Study on the critical raw materials for the EU
2023 :final report: Publications Office of the European
Union.
GÜLGÖNÜL, İ. (2019). Zeta potential of Teflon in pres-
ence of monovalent and divalent ions. Physicochemical
Problems of Mineral Processing, 55(3), 792–801. doi:
10.5277/ppmp19014.
Leistner, T., Müller, M., Erler, J. V., Rudolph, M., &
Peuker, U. A. (2014). Selective Separation of Ultrafine
Particles Using Two‐Liquid Flotation. Chemie
Ingenieur Technik, 86(6), 831–839. doi: 10.1002/cite
.201400011.
Olbrich, W., Kadyk, T., Sauter, U., &Eikerling, M. (2022).
Review—Wetting Phenomena in Catalyst Layers
of PEM Fuel Cells: Novel Approaches for Modeling
and Materials Research. Journal of the Electrochemical
Society, 169(5), 054521. doi: 10.1149/1945-7111
/ac6e8b.
Scheepers, F., Stähler, A., Stähler, M., Carmo, M.,
Lehnert, W., &Stolten, D. (2018). Layer Formation
from Polymer Carbon-Black Dispersions. Coatings,
8(12). Retrieved from doi: 10.3390/coatings8120450.
Schneider, C. A., Rasband, W. S., &Eliceiri, K. W.
(2012). NIH Image to ImageJ: 25 years of image
analysis. Nature Methods, 9(7), 671–675. doi: 10.1038
/nmeth.2089.
Schuetzner, W., &Kenndler, E. (1992). Electrophoresis
in synthetic organic polymer capillaries: variation of
electroosmotic velocity and. zeta. potential with pH
and solvent composition. Analytical Chemistry, 64(17),
1991–1995.
Vol’fkovich, Y. M., Sosenkin, V. E., &Nikol’skaya, N. F.
(2010). Hydrophilic-hydrophobic and sorption prop-
erties of the catalyst layers of electrodes in a proton-
exchange membrane fuel cell: A stage-by-stage study.
Russian Journal of Electrochemistry, 46(4), 438–449.
doi: 10.1134/S1023193510040099.
Zhou, L.-F., Yang, D., Du, T., Gong, H., &Luo, W.-B.
(2020). The Current Process for the Recycling of Spent
Lithium Ion Batteries. Frontiers in Chemistry, 8. doi:
10.3389/fchem.2020.578044.