3192 XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3
Wang, R.-C., Lin, Y.-C., &Wu, S.-H. (2009). A novel
recovery process of metal values from the cathode
active materials of the lithium-ion secondary batter-
ies. Hydrometallurgy, 99(3), 194–201. doi: 10.1016
/j.hydromet.2009.08.005.
Wood, E., Alexander, M., &Bradley, T.H. (2011).
Investigation of battery end-of-life conditions
for plug-in hybrid electric vehicles. Journal of
power sources, 196(11), 5147–5154. doi: 10.1016
/j.jpowsour.2011.02.025.
Xu, C., Dai, Q., Gaines, L., Hu, M., Tukker, A.,
&Steubing, B. (2020). Future material
demand for automotive lithium-based batteries.
Communications Materials, 1(1), 99. doi: 10.1038
/s43246‑020‑00095‑x.
Yu, J., He, Y., Ge, Z., Li, H., Xie, W., &Wang, S. (2018).
A promising physical method for recovery of LiCoO2
and graphite from spent lithium-ion batteries: Grinding
flotation. Separation and Purification Technology, 190,
45–52. doi: 10.1016/j.seppur.2017.08.049.
Yu, J., He, Y., Qu, L., Yang, J., Xie, W., &Zhu, X.
(2020). Exploring the critical role of grinding modi-
fication on the flotation recovery of electrode mate-
rials from spent lithium ion batteries. Journal of
Cleaner Production, 274, 123066. doi: 10.1016
/j.jclepro.2020.123066.
Yun, L., Linh, D., Shui, L., Peng, X., Garg, A., Le, M.L.P.,
Asghari, S., &Sandoval, J. (2018). Metallurgical and
mechanical methods for recycling of lithium-ion bat-
tery pack for electric vehicles. Resources, Conservation
and Recycling, 136, 198–208. doi: 10.1016
/j.resconrec.2018.04.025.
Zhan, R., Oldenburg, Z., &Pan, L. (2018). Recovery
of active cathode materials from lithium-ion bat-
teries using froth flotation. Sustainable Materials
and Technologies, 17, e00062. doi: 10.1016
/j.susmat.2018.e00062.
Zhan, R., Payne, T., Leftwich, T., Perrine, K., &
Pan, L. (2020). De-agglomeration of cathode
composites for direct recycling of Li-ion batter-
ies. Waste Management, 105, 39–48. doi: 10.1016
/j.wasman.2020.01.035.
Zhang, T., He, Y., Wang, F., Ge, L., Zhu, X., &Li, H.
(2014). Chemical and process mineralogical char-
acterizations of spent lithium-ion batteries: An
approach by multi-analytical techniques. Waste
Management, 34(6), 1051–1058. doi: 10.1016
/j.wasman.2014.01.002.
Zheng, Y., Long, H.L., Zhou, L., Wu, Z.S., Zhou, X.,
You, L., Yang, Y., &Liu, J.W. (2016). Leaching
Procedure and Kinetic Studies of Cobalt in Cathode
Materials from Spent Lithium Ion Batteries using
Organic Citric acid as Leachant. International Journal
of Environmental Research, 10(1), 159–168. doi:
10.22059/ijer.2016.56898.
Zhong, X., Liu, W., Han, J., Jiao, F., Zhu, H., &Qin, W.
(2020). Pneumatic separation for crushed spent lith-
ium-ion batteries. Waste Management, 118, 331–340.
doi: 10.1016/j.wasman.2020.08.053.
Zhu, X., Zhang, C., Feng, P., Yang, X., &Yang, X.
(2021). A novel pulsated pneumatic separation
with variable-diameter structure and its applica-
tion in the recycling spent lithium-ion batter-
ies. Waste Management, 131, 20–30. doi: 10.1016
/j.wasman.2021.05.027
Wang, R.-C., Lin, Y.-C., &Wu, S.-H. (2009). A novel
recovery process of metal values from the cathode
active materials of the lithium-ion secondary batter-
ies. Hydrometallurgy, 99(3), 194–201. doi: 10.1016
/j.hydromet.2009.08.005.
Wood, E., Alexander, M., &Bradley, T.H. (2011).
Investigation of battery end-of-life conditions
for plug-in hybrid electric vehicles. Journal of
power sources, 196(11), 5147–5154. doi: 10.1016
/j.jpowsour.2011.02.025.
Xu, C., Dai, Q., Gaines, L., Hu, M., Tukker, A.,
&Steubing, B. (2020). Future material
demand for automotive lithium-based batteries.
Communications Materials, 1(1), 99. doi: 10.1038
/s43246‑020‑00095‑x.
Yu, J., He, Y., Ge, Z., Li, H., Xie, W., &Wang, S. (2018).
A promising physical method for recovery of LiCoO2
and graphite from spent lithium-ion batteries: Grinding
flotation. Separation and Purification Technology, 190,
45–52. doi: 10.1016/j.seppur.2017.08.049.
Yu, J., He, Y., Qu, L., Yang, J., Xie, W., &Zhu, X.
(2020). Exploring the critical role of grinding modi-
fication on the flotation recovery of electrode mate-
rials from spent lithium ion batteries. Journal of
Cleaner Production, 274, 123066. doi: 10.1016
/j.jclepro.2020.123066.
Yun, L., Linh, D., Shui, L., Peng, X., Garg, A., Le, M.L.P.,
Asghari, S., &Sandoval, J. (2018). Metallurgical and
mechanical methods for recycling of lithium-ion bat-
tery pack for electric vehicles. Resources, Conservation
and Recycling, 136, 198–208. doi: 10.1016
/j.resconrec.2018.04.025.
Zhan, R., Oldenburg, Z., &Pan, L. (2018). Recovery
of active cathode materials from lithium-ion bat-
teries using froth flotation. Sustainable Materials
and Technologies, 17, e00062. doi: 10.1016
/j.susmat.2018.e00062.
Zhan, R., Payne, T., Leftwich, T., Perrine, K., &
Pan, L. (2020). De-agglomeration of cathode
composites for direct recycling of Li-ion batter-
ies. Waste Management, 105, 39–48. doi: 10.1016
/j.wasman.2020.01.035.
Zhang, T., He, Y., Wang, F., Ge, L., Zhu, X., &Li, H.
(2014). Chemical and process mineralogical char-
acterizations of spent lithium-ion batteries: An
approach by multi-analytical techniques. Waste
Management, 34(6), 1051–1058. doi: 10.1016
/j.wasman.2014.01.002.
Zheng, Y., Long, H.L., Zhou, L., Wu, Z.S., Zhou, X.,
You, L., Yang, Y., &Liu, J.W. (2016). Leaching
Procedure and Kinetic Studies of Cobalt in Cathode
Materials from Spent Lithium Ion Batteries using
Organic Citric acid as Leachant. International Journal
of Environmental Research, 10(1), 159–168. doi:
10.22059/ijer.2016.56898.
Zhong, X., Liu, W., Han, J., Jiao, F., Zhu, H., &Qin, W.
(2020). Pneumatic separation for crushed spent lith-
ium-ion batteries. Waste Management, 118, 331–340.
doi: 10.1016/j.wasman.2020.08.053.
Zhu, X., Zhang, C., Feng, P., Yang, X., &Yang, X.
(2021). A novel pulsated pneumatic separation
with variable-diameter structure and its applica-
tion in the recycling spent lithium-ion batter-
ies. Waste Management, 131, 20–30. doi: 10.1016
/j.wasman.2021.05.027