XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3 3085
REFERENCES
Biçak, Ö., Ekmekçi, Z., Can, M., Öztürk, Y., 2012. The
effect of water chemistry on froth stability and surface
chemistry of the flotation of a Cu-Zn sulfide ore. Int.
J. Miner. Process. 102–103, 32–37.
Bicak. O, Ozturk. Y, Ozdemir. E, Ekmekci. Z., 2018.
Modelling effects of dissolved ions in process water on
flotation performance. Minerals Eng. 128. 84–91.
Castro, S., 2012. Hydrolyzing ions in flotation circuits:
sea water flotation. Proc. XIII International Mineral
Processing Symposium, Bodrum-Turkey, pp. 219–227.
Castro, S., 2018, Physico-Chemical factors in flota-
tion of Cu-Mo-Fe ores with seawater: a critical
review, Physicochem. Probl. Miner. Process., 54(4),
1223–1236.
Forssberg, K.S., Hallin, M.I., 1989. Process water recircu-
lation in a lead-zink plant and other sulphide flotation
plants. Challenges Miner. Process. 452–466.
Grano, S.R., Wang, P.L.M., Skinner, W., Johnson N.W.,
Ralston, J., 1995. Detection and control of calcium
sulphate precipitation in the lead circuit of the Hilton
concentrator of Mount Isa Mines Limited, Australia.
In: Proceedings of the XIX International.
Johnson, N.W., 2003. Issues in Maximisation of Recycling
of Water in a Mineral Processing Plant. Water Min. 1.
Levay. G, Schumann. R., 2006. A systematic approach to
water quality management in the minerals processing
industry. In: Water in Mining Conference, Brisbane.
277–287.
Laskowski, J.S. and Castro, S., 2008. Flotation in con-
centrated aqueous electrolyte solutions. Proc. 11th
International Mineral Processing Symposium, Belek-
Antalya, Turkey, pp. 281–290.
Rao, S.R., Finch, J.A., 1989. A review of water re-use in
flotation. Miner. Eng. 2, 65–85.
S&P Global, 2022, The Future of Copper: Will the loom-
ing supply gap short-circuit the energy transition?
REFERENCES
Biçak, Ö., Ekmekçi, Z., Can, M., Öztürk, Y., 2012. The
effect of water chemistry on froth stability and surface
chemistry of the flotation of a Cu-Zn sulfide ore. Int.
J. Miner. Process. 102–103, 32–37.
Bicak. O, Ozturk. Y, Ozdemir. E, Ekmekci. Z., 2018.
Modelling effects of dissolved ions in process water on
flotation performance. Minerals Eng. 128. 84–91.
Castro, S., 2012. Hydrolyzing ions in flotation circuits:
sea water flotation. Proc. XIII International Mineral
Processing Symposium, Bodrum-Turkey, pp. 219–227.
Castro, S., 2018, Physico-Chemical factors in flota-
tion of Cu-Mo-Fe ores with seawater: a critical
review, Physicochem. Probl. Miner. Process., 54(4),
1223–1236.
Forssberg, K.S., Hallin, M.I., 1989. Process water recircu-
lation in a lead-zink plant and other sulphide flotation
plants. Challenges Miner. Process. 452–466.
Grano, S.R., Wang, P.L.M., Skinner, W., Johnson N.W.,
Ralston, J., 1995. Detection and control of calcium
sulphate precipitation in the lead circuit of the Hilton
concentrator of Mount Isa Mines Limited, Australia.
In: Proceedings of the XIX International.
Johnson, N.W., 2003. Issues in Maximisation of Recycling
of Water in a Mineral Processing Plant. Water Min. 1.
Levay. G, Schumann. R., 2006. A systematic approach to
water quality management in the minerals processing
industry. In: Water in Mining Conference, Brisbane.
277–287.
Laskowski, J.S. and Castro, S., 2008. Flotation in con-
centrated aqueous electrolyte solutions. Proc. 11th
International Mineral Processing Symposium, Belek-
Antalya, Turkey, pp. 281–290.
Rao, S.R., Finch, J.A., 1989. A review of water re-use in
flotation. Miner. Eng. 2, 65–85.
S&P Global, 2022, The Future of Copper: Will the loom-
ing supply gap short-circuit the energy transition?