XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3 2991
Miettinen, T., Ralston, J., &Fornasiero, D. (2010). The
limits of fine particle flotation. Minerals Engineering,
23(5), 420–437. doi: 10.1016/j.mineng.2009.12.006.
Morar, S.H., Bradshaw, D.J., &Harris, M.C. (2012). The
use of the froth surface lamellae burst rate as a flotation
froth stability measurement. Minerals Engineering, 36,
152–159.
Pease, J., Curry, D., &Young, M. (2006). Designing
flotation circuits for high fines recovery. Minerals
Engineering, 19(6–8), 831–840.
Runge, K.C., Tabosa, E., Crosbie, R., &McMaster, J.K.
(2012). Effect of Flotation Feed Density on the
Operation of a Flotation Cell.
Schubert, H. (2008). On the optimization of hydrody-
namics in fine particle flotation. Minerals Engineering,
21(1214), 930–936.
Yáñez, A., Kupka, N., Tunç, B., Suhonen, J., &Rinne, A.
(2024). Fine and ultrafine flotation with the Concorde
CellTM A journey. Minerals Engineering, 206,
108538. doi: 10.1016/j.mineng.2023.108538.
Yoon, R.-H. (2000). The role of hydrodynamic and sur-
face forces in bubble–particle interaction. International
Journal of Mineral Processing, 58(1–4), 129–143.
Yoon, R.H., &Luttrell, G.H. (1989). The Effect of Bubble
Size on Fine Particle Flotation. Mineral Processing and
Extractive Metallurgy Review, 5(1–4), 101–122. doi:
10.1080/08827508908952646
Previous Page Next Page