2756 XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3
Table 3. Flotation kinetic model used in experiments (Ran et al., 2019)
Serial Number Model Equation
1 Classic first-order kinetic model e 1 f f =-
3
-kt ^h
2 First-order model with rectangular
distribution of flotabilities kt e 1 1 f f =--
3
-kt ^hD :1
3 Second-order kinetic model kt
1
2
f f3kt
f =+
3
4 Second-order model with rectangular
distribution of flotabilities kt kth@0 1 1 f f =-+
3 6ln^1 &
*ɛ: cumulative recovery ɛ∞: theoretical recovery k: flotation speed constant t: flotation time
0 1 2 3 4 5
0
20
40
60
80
100
Flotation time (min)
Experiment
k R2
Model 1 86.34 1.04970 97.22
Model 2 97.64 2.03425 95.98
Model 3 99.99 0.01335 94.34
Model 4 99.99 3.83708 91.92
(a)
0 1 2 3 4 5
0
20
40
60
80
100
Flotation time (min)
Experiment
k R2
Model 1 95.69 1.63935 99.99
Model 2 99.99 2.55480 93.62
Model 3 99.99 0.02150 90.43
Model 4 99.99 5.55130 95.68
(b)
Figure 9. Effect of micro-nano bubbles on chlorite flotation kinetics under the same reagent system (a-without micro-nano
bubbles, b- with micro-nano bubbles)
0 20 40 60 80 100
0
20
40
60
80
100
Model 1 R2
Model 2 R2
Model 3 R2
Model 4 R2
Cumulative recovery (Experimental values, %)
(a)
0 20 40 60 80 100
0
20
40
60
80
100
Model 1 R2
Model 2 R2
Model 3 R2
Model 4 R2
Cumulative recovery (Experimental values, %)
(b)
Figure 10. Fitting of chlorite flotation kinetic model under the same reagent system (a-without micro-nano bubbles, b- with
micro-nano bubbles)
Cumulative
recovery
(%)
Cumulative
recovery
(%)
Cumulative
recovery
(Simulated
value,
%)
Cumulative
recovery
(Simulated
value,
%)
Table 3. Flotation kinetic model used in experiments (Ran et al., 2019)
Serial Number Model Equation
1 Classic first-order kinetic model e 1 f f =-
3
-kt ^h
2 First-order model with rectangular
distribution of flotabilities kt e 1 1 f f =--
3
-kt ^hD :1
3 Second-order kinetic model kt
1
2
f f3kt
f =+
3
4 Second-order model with rectangular
distribution of flotabilities kt kth@0 1 1 f f =-+
3 6ln^1 &
*ɛ: cumulative recovery ɛ∞: theoretical recovery k: flotation speed constant t: flotation time
0 1 2 3 4 5
0
20
40
60
80
100
Flotation time (min)
Experiment
k R2
Model 1 86.34 1.04970 97.22
Model 2 97.64 2.03425 95.98
Model 3 99.99 0.01335 94.34
Model 4 99.99 3.83708 91.92
(a)
0 1 2 3 4 5
0
20
40
60
80
100
Flotation time (min)
Experiment
k R2
Model 1 95.69 1.63935 99.99
Model 2 99.99 2.55480 93.62
Model 3 99.99 0.02150 90.43
Model 4 99.99 5.55130 95.68
(b)
Figure 9. Effect of micro-nano bubbles on chlorite flotation kinetics under the same reagent system (a-without micro-nano
bubbles, b- with micro-nano bubbles)
0 20 40 60 80 100
0
20
40
60
80
100
Model 1 R2
Model 2 R2
Model 3 R2
Model 4 R2
Cumulative recovery (Experimental values, %)
(a)
0 20 40 60 80 100
0
20
40
60
80
100
Model 1 R2
Model 2 R2
Model 3 R2
Model 4 R2
Cumulative recovery (Experimental values, %)
(b)
Figure 10. Fitting of chlorite flotation kinetic model under the same reagent system (a-without micro-nano bubbles, b- with
micro-nano bubbles)
Cumulative
recovery
(%)
Cumulative
recovery
(%)
Cumulative
recovery
(Simulated
value,
%)
Cumulative
recovery
(Simulated
value,
%)