XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3 2713
REFERENCES
Amelunxen, P., Sandoval, G., Barriga, D., Amelunxen, R.
2014. The implications of the froth recovery at the
laboratory scale. Minerals Engineering, 66–68, 54–61.
Bikerman, J., 1973. Foams. Springer, New York.
Falatsu, M and Dobby, G, 1992. Froth performance in com-
mercial sized flotation columns, Minerals Engineering,
5, 1207–1223.
Feteris, S M, Frew, J A and Jowett, A, 1987. Modelling the
effect of froth depth in flotation, International Journal
of Mineral Processing, 20, 121–135.
Gorain, B.K. Burgess, F., Franzidis, J.P. and Manlapig, E.V.
1997. Bubble Surface Area Flux: A new criterion for
flotation scale-up. Proceedings of the 6th Annual Mill
Operators Conference, Madang, Papua New Guinea,
6–8 October, 1997, AusIMM, 1997 Publication series
3/97, 141–148.
Gorain, B.K., Harris, M.C, Franzidis, J.P. and
Manlapig, E.V. 1998. The effect of froth residence
time on the kinetics of flotation. Minerals Engineering,
11(7), 627–638.
Neethling, S.J. 2008. Simple approximations for estimat-
ing froth recovery. International Journal of Mineral
Processing, 89, 44–52.
Oosthuizen, D.J., le Roux, J.D., Craig, I.K. 2021. A
dynamic flotation model to infer process characteris-
tics from online measurements, Minerals Engineering,
167, 106878.
Quintanilla, P., Neethling, S.J., Navia, D., Brito-
Parada, P.R. 2021. A dynamic flotation model for
predictive control incorporating froth physics. Part I:
Model development, Minerals Engineering, 173.
Rahman, R.M., Ata, S., Jameson, G.J. 2013. Froth recovery
measurements in an industrial flotation cell. Minerals
Engineering, 53, 193–202.
Savassi, O N, Alexander, D J, Johnson, N W, Franzidis,
J P and Manlapig, E V, 1997. Measurement of froth
recovery of attached particles in industrial flotation
cells, in Proceedings of the 6th Annual Mill Operators
Conference, pp149–155.
Tsatouhas, G., Grano, S.R., Vera, M. 2006. Case studies on
the performance and characterisation of the froth phase
in industrial flotation circuits. Minerals Engineering,
19, 774–783.
Vera, M A, Franzidis, J P and Manlapig, E V, 1998.
Simultaneous determination of collection zone rate
constant and froth zone recovery in a mechanical flo-
tation environment, Minerals Engineering, 12(10),
1163–1176.
Yianatos, J B, Moys, M H, Contreras, F and Villanueva,
A, 2008. Froth recovery of industrial flotation cells,
Minerals Engineering, 21(12–14), 817–825.
Zanin, M., Wightman, E., Grano, S.R., Franzidis, J-P.
2009. Quantifying contributions to froth stability
in porphyry copper plants, International Journal of
Mineral Processing, 91, 19–27.
REFERENCES
Amelunxen, P., Sandoval, G., Barriga, D., Amelunxen, R.
2014. The implications of the froth recovery at the
laboratory scale. Minerals Engineering, 66–68, 54–61.
Bikerman, J., 1973. Foams. Springer, New York.
Falatsu, M and Dobby, G, 1992. Froth performance in com-
mercial sized flotation columns, Minerals Engineering,
5, 1207–1223.
Feteris, S M, Frew, J A and Jowett, A, 1987. Modelling the
effect of froth depth in flotation, International Journal
of Mineral Processing, 20, 121–135.
Gorain, B.K. Burgess, F., Franzidis, J.P. and Manlapig, E.V.
1997. Bubble Surface Area Flux: A new criterion for
flotation scale-up. Proceedings of the 6th Annual Mill
Operators Conference, Madang, Papua New Guinea,
6–8 October, 1997, AusIMM, 1997 Publication series
3/97, 141–148.
Gorain, B.K., Harris, M.C, Franzidis, J.P. and
Manlapig, E.V. 1998. The effect of froth residence
time on the kinetics of flotation. Minerals Engineering,
11(7), 627–638.
Neethling, S.J. 2008. Simple approximations for estimat-
ing froth recovery. International Journal of Mineral
Processing, 89, 44–52.
Oosthuizen, D.J., le Roux, J.D., Craig, I.K. 2021. A
dynamic flotation model to infer process characteris-
tics from online measurements, Minerals Engineering,
167, 106878.
Quintanilla, P., Neethling, S.J., Navia, D., Brito-
Parada, P.R. 2021. A dynamic flotation model for
predictive control incorporating froth physics. Part I:
Model development, Minerals Engineering, 173.
Rahman, R.M., Ata, S., Jameson, G.J. 2013. Froth recovery
measurements in an industrial flotation cell. Minerals
Engineering, 53, 193–202.
Savassi, O N, Alexander, D J, Johnson, N W, Franzidis,
J P and Manlapig, E V, 1997. Measurement of froth
recovery of attached particles in industrial flotation
cells, in Proceedings of the 6th Annual Mill Operators
Conference, pp149–155.
Tsatouhas, G., Grano, S.R., Vera, M. 2006. Case studies on
the performance and characterisation of the froth phase
in industrial flotation circuits. Minerals Engineering,
19, 774–783.
Vera, M A, Franzidis, J P and Manlapig, E V, 1998.
Simultaneous determination of collection zone rate
constant and froth zone recovery in a mechanical flo-
tation environment, Minerals Engineering, 12(10),
1163–1176.
Yianatos, J B, Moys, M H, Contreras, F and Villanueva,
A, 2008. Froth recovery of industrial flotation cells,
Minerals Engineering, 21(12–14), 817–825.
Zanin, M., Wightman, E., Grano, S.R., Franzidis, J-P.
2009. Quantifying contributions to froth stability
in porphyry copper plants, International Journal of
Mineral Processing, 91, 19–27.