2368 XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3
in the cleaning process, where the objective is to improve
the copper grade. In the future study, it will be necessary to
conduct column flotation tests by using ores of low copper
grade.
ACKNOWLEDGMENTS
The authors would like to thank Japan Organization for
Metals and Energy Security (JOGMEC) for the support in
some parts of this study.
REFERENCES
Nakamura I. 2013. Saishin senko gijutsujijo: koshubetsu
daihyoteki process hen(1) :Copper, Kinzoku Shigen
Rep., 43(1). p. 45–62.
Yoon R.H. 1993. Microbubble flotation. Miner. Eng. 6(6),
619–630.
Nguyen A.V. and Schulze H.J. 2004. Colloidal Science of
Flotation, New York: CRC press.
Yoon R.H. and Lutttrell G.H. 1989. Miner. Process. The
effect of bubble size on fine particle flotation. Extr.
Metall. Rev. 5, 101–122.
Matsuoka H., Satur J.V., Mitsuhashi K., Hiroyoshi N., Ito
M., Park I., Aikawa K. 2023. Improving column flota-
tion performance of fine copper minerals by agglom-
eration accelerating conditions.
Proceedings of The Mining and Materials Processing
Conference.
Sutherland K.L. 1948. Physical chemistry of flotation.
XI. Kinetics of the flotation process. J. Phys. Colloid
Chem. 52, 394.
Wills B. A. 2016. Will’s Mineral Processing Technology: An
Introduction to the Practical Aspects of Ore Treatment
and Mineral Recovery Butterworth-Heinemann:
Oxford, UK.
Takamori T. 1985. Sekitanno suichuzoryu -Oil agglom-
eration-. Journal of the Society of Powder Technology,
Japan, 22(8).
Ateşok, G., Boylu, F., and Çeli˘k, M. S. 2001. Carrier flo-
tation for desulfurization and deashing of difficult-to-
float coals. Minerals Engineering, 14(6), 661–670.
Chia, Y. H., and Somasundaran, P. 1983. A theoretical
approach to flocculation in carrier flotation for benefi-
ciation of clay. Colloids and Surfaces, 8(2), 187–202.
Valderrama, L., and Rubio, J. 1998. High intensity condi-
tioning and the carrier flotation of gold fine particles.
International Journal of Mineral Processing, 52(4),
273–285.
Hornn, V., Ito, M., Shimada, H., Tabelin, C. B., Jeon, S.,
Park, I., and Hiroyoshi, N. 2020.
Agglomeration-Flotation of Finely Ground Chalcopyrite
and Quartz: Effects of Agitation Strength during
Agglomeration Using Emulsified Oil on Chalcopyrite.
Minerals, 10(4), 380.
Schulze H. J. 1983. Physico-Chemical Elementary
Processes in Flotation. Amsterdam :Elsevier.
Schulze H. J. 1989. Hydrodynamics of Bubble-Mineral
Particle Collisions, UK :Mineral Processing and
Extractive Metallurgy Review, 5 (1989) p. 43–76.
Figure 5. The continuous flotation tests results of experimental copper recoveries (dot) and fitted curves (line) at the conditions
of collector dosage (i), pulp density (ii), and carrier addition (iii)
in the cleaning process, where the objective is to improve
the copper grade. In the future study, it will be necessary to
conduct column flotation tests by using ores of low copper
grade.
ACKNOWLEDGMENTS
The authors would like to thank Japan Organization for
Metals and Energy Security (JOGMEC) for the support in
some parts of this study.
REFERENCES
Nakamura I. 2013. Saishin senko gijutsujijo: koshubetsu
daihyoteki process hen(1) :Copper, Kinzoku Shigen
Rep., 43(1). p. 45–62.
Yoon R.H. 1993. Microbubble flotation. Miner. Eng. 6(6),
619–630.
Nguyen A.V. and Schulze H.J. 2004. Colloidal Science of
Flotation, New York: CRC press.
Yoon R.H. and Lutttrell G.H. 1989. Miner. Process. The
effect of bubble size on fine particle flotation. Extr.
Metall. Rev. 5, 101–122.
Matsuoka H., Satur J.V., Mitsuhashi K., Hiroyoshi N., Ito
M., Park I., Aikawa K. 2023. Improving column flota-
tion performance of fine copper minerals by agglom-
eration accelerating conditions.
Proceedings of The Mining and Materials Processing
Conference.
Sutherland K.L. 1948. Physical chemistry of flotation.
XI. Kinetics of the flotation process. J. Phys. Colloid
Chem. 52, 394.
Wills B. A. 2016. Will’s Mineral Processing Technology: An
Introduction to the Practical Aspects of Ore Treatment
and Mineral Recovery Butterworth-Heinemann:
Oxford, UK.
Takamori T. 1985. Sekitanno suichuzoryu -Oil agglom-
eration-. Journal of the Society of Powder Technology,
Japan, 22(8).
Ateşok, G., Boylu, F., and Çeli˘k, M. S. 2001. Carrier flo-
tation for desulfurization and deashing of difficult-to-
float coals. Minerals Engineering, 14(6), 661–670.
Chia, Y. H., and Somasundaran, P. 1983. A theoretical
approach to flocculation in carrier flotation for benefi-
ciation of clay. Colloids and Surfaces, 8(2), 187–202.
Valderrama, L., and Rubio, J. 1998. High intensity condi-
tioning and the carrier flotation of gold fine particles.
International Journal of Mineral Processing, 52(4),
273–285.
Hornn, V., Ito, M., Shimada, H., Tabelin, C. B., Jeon, S.,
Park, I., and Hiroyoshi, N. 2020.
Agglomeration-Flotation of Finely Ground Chalcopyrite
and Quartz: Effects of Agitation Strength during
Agglomeration Using Emulsified Oil on Chalcopyrite.
Minerals, 10(4), 380.
Schulze H. J. 1983. Physico-Chemical Elementary
Processes in Flotation. Amsterdam :Elsevier.
Schulze H. J. 1989. Hydrodynamics of Bubble-Mineral
Particle Collisions, UK :Mineral Processing and
Extractive Metallurgy Review, 5 (1989) p. 43–76.
Figure 5. The continuous flotation tests results of experimental copper recoveries (dot) and fitted curves (line) at the conditions
of collector dosage (i), pulp density (ii), and carrier addition (iii)