2324 XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3
Rahimi, M., Dehghani, F., Rezai, B., Aslani, M.R. (2012).
Influence of the roughness and shape of quartz par-
ticles on their flotation kinetics, International Journal
of Minerals Metallurgy and Materials. 19 284–289.
Ralston, J., Fornasiero, D., Hayes, R. (1999). Bubble–
particle attachment and detachment in flotation.
International Journal of Mineral Processing 56, 133–
164. doi: 10.1016/S0301-7516(98)00046-5.
Randall, E. (2005). The UCT Bubble Size Analyser.
University of Cape Town, Chemical Engineering
Department, Cape Town, South Africa.
Sven-Nilsson, I. (1934). Einfluß der Berührungszeit
zwischen Mineral und Luftblase bei der Flotation.
Kolloid-Zeitschrift 69, 230–232. doi:10.1007/
BF01433238.
Verrelli, D.I., Bruckard, W.J., Koh, P.T.L., Schwarz, M.P.,
Follink, B. (2012). Influence of particle shape and
roughness on the induction period for particle–bubble
attachment, XXVI International Mineral Processing
Congress (IMPC 2012), Indian Institute of Mineral
Engineers (IIME) and Indian Institute of Metals (IIM),
New Delhi, India.
Vizcarra, T.G., Harmer, S.L., Wightman, E.M., Johnson,
N.W., Manlapig, E.V. (2011). The influence of particle
shape properties and associated surface chemistry on the
flotation kinetics of chalcopyrite. Minerals Engineering.
24, 807–816. doi:10.1016/j.mineng.2011.02.019 51.
Wang, L., Sharp, D., Masliyah, J., Xu, Z. (2013).
Measurement of Interactions between Solid Particles,
Liquid Droplets, and/or Gas Bubbles in a Liquid
using an Integrated Thin Film Drainage Apparatus.
Langmuir 29, 3594–3603. doi:10.1021/la304490e.
Wang, W., Zhou, Z., Nandakumar, K., Masliyah, J and Xu,
Z. (2005). An induction time model for the attach-
ment of an air bubble to a hydrophobic sphere in
aqueous solutions. International Journal of Mineral
Processing. 75: 69–82.
Webber, G. B., Manica, R.., Edwards, S. A.., Carnie, S.
L.., Stevens, G. W., Grieser, F., Dagastine, R.R., Chan,
D. Y. C. (2008). Dynamic forces between a moving
particle and a deformable drop. Journal of Physical
Chemistry C 112, 567.
Ye, Y. and Miller, J.D. (1989). Induction-time measure-
ments at a particle bed. International Journal of
Mineral Processing. 25 (3–4): 221–240.
Yoon, R. and Yordan, J.L. (1991). Induction-time measure-
ments for the quartz-amine flotation system. Journal of
Colloid and Interface Science. 141 (2): 374–383.
Zawala, J., Drzymala, J., Malysa, K. (2008). An investi-
gation into the mechanism of the three-phase con-
tact formation at fluorite surface by colliding bubble,
International Journal of Mineral Processing. 88:
72– 79.
Rahimi, M., Dehghani, F., Rezai, B., Aslani, M.R. (2012).
Influence of the roughness and shape of quartz par-
ticles on their flotation kinetics, International Journal
of Minerals Metallurgy and Materials. 19 284–289.
Ralston, J., Fornasiero, D., Hayes, R. (1999). Bubble–
particle attachment and detachment in flotation.
International Journal of Mineral Processing 56, 133–
164. doi: 10.1016/S0301-7516(98)00046-5.
Randall, E. (2005). The UCT Bubble Size Analyser.
University of Cape Town, Chemical Engineering
Department, Cape Town, South Africa.
Sven-Nilsson, I. (1934). Einfluß der Berührungszeit
zwischen Mineral und Luftblase bei der Flotation.
Kolloid-Zeitschrift 69, 230–232. doi:10.1007/
BF01433238.
Verrelli, D.I., Bruckard, W.J., Koh, P.T.L., Schwarz, M.P.,
Follink, B. (2012). Influence of particle shape and
roughness on the induction period for particle–bubble
attachment, XXVI International Mineral Processing
Congress (IMPC 2012), Indian Institute of Mineral
Engineers (IIME) and Indian Institute of Metals (IIM),
New Delhi, India.
Vizcarra, T.G., Harmer, S.L., Wightman, E.M., Johnson,
N.W., Manlapig, E.V. (2011). The influence of particle
shape properties and associated surface chemistry on the
flotation kinetics of chalcopyrite. Minerals Engineering.
24, 807–816. doi:10.1016/j.mineng.2011.02.019 51.
Wang, L., Sharp, D., Masliyah, J., Xu, Z. (2013).
Measurement of Interactions between Solid Particles,
Liquid Droplets, and/or Gas Bubbles in a Liquid
using an Integrated Thin Film Drainage Apparatus.
Langmuir 29, 3594–3603. doi:10.1021/la304490e.
Wang, W., Zhou, Z., Nandakumar, K., Masliyah, J and Xu,
Z. (2005). An induction time model for the attach-
ment of an air bubble to a hydrophobic sphere in
aqueous solutions. International Journal of Mineral
Processing. 75: 69–82.
Webber, G. B., Manica, R.., Edwards, S. A.., Carnie, S.
L.., Stevens, G. W., Grieser, F., Dagastine, R.R., Chan,
D. Y. C. (2008). Dynamic forces between a moving
particle and a deformable drop. Journal of Physical
Chemistry C 112, 567.
Ye, Y. and Miller, J.D. (1989). Induction-time measure-
ments at a particle bed. International Journal of
Mineral Processing. 25 (3–4): 221–240.
Yoon, R. and Yordan, J.L. (1991). Induction-time measure-
ments for the quartz-amine flotation system. Journal of
Colloid and Interface Science. 141 (2): 374–383.
Zawala, J., Drzymala, J., Malysa, K. (2008). An investi-
gation into the mechanism of the three-phase con-
tact formation at fluorite surface by colliding bubble,
International Journal of Mineral Processing. 88:
72– 79.