2222 XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3
Güler, T., Çetinkaya, S., Akdemir, Ü., Do An, T., &
Kocaba, D. (2009). Effect of Fe-Ions on Pyrite-
Xanthate Interaction in Chemically Manipulated
Electrochemical Conditions. International Journal of
Natural and Engineering Sciences,3(3),1–07.www.nobel
.gen.tr.
Guo-huaDj, G., Jing-ping, D., Hui, W., &Guan-zhoufi, Q.
(2004). Galvanic coupling and its effect on origin poten-
tial flotation system of sulfide minerals ®.
How Do We Use Tellurium? (n.d.). doi: 10.3133/fs20143077.
Jefferson, M., Yenial-Arslan, U., Evans, C., Curtis-
Morar, C., O’Donnell, R., Parbhakar-Fox, A., &
Forbes, E. (2023). Effect of pyrite textures and compo-
sition on flotation performance: A review. In Minerals
Engineering (Vol. 201). Elsevier Ltd. doi: 10.1016
/j.mineng.2023.108234.
Jiang, K., Han, Y., Liu, J., Wang, Y., Ge, W., &Zhang, D.
(2023). Experimental and theoretical study of the effect
of pH level on the surface properties and floatability
of pyrite. Applied Surface Science, 615. doi: 10.1016
/j.apsusc.2023.156350.
Liao, N., Wu, C., Xu, J., Feng, B., Wu, J., &Gong, Y.
(2020). Effect of Grinding Media on Grinding-
Flotation Behavior of Chalcopyrite and Pyrite. Frontiers
in Materials, 7. doi: 10.3389/fmats.2020.00176.
Liu, W., Cook, N. J., Ciobanu, C. L., &Gilbert, S. E.
(2019). Trace element substitution and grain-scale
compositional heterogeneity in enargite. Ore Geology
Reviews, 111. doi: 10.1016/j.oregeorev.2019.103004.
Makuei, F. M., &Senanayake, G. (2018). Extraction of
tellurium from lead and copper bearing feed materials
and interim metallurgical products – A short review.
In Minerals Engineering (Vol. 115, pp. 79–87). Elsevier
Ltd. doi: 10.1016/j.mineng.2017.10.013.
Miller, J. D., Kappes, R., Simmons, G. L., &Levier, K.
M. (2006). Pyrite activation in amyl xanthate flotation
with nitrogen. Minerals Engineering, 19(6–8), 659–
665. doi: 10.1016/j.mineng.2005.09.017.
Moslemi, H., &Gharabaghi, M. (2017). A review on
electrochemical behavior of pyrite in the froth flota-
tion process. In Journal of Industrial and Engineering
Chemistry (Vol. 47, pp. 1–18). Korean Society of
Industrial Engineering Chemistry. doi: 10.1016
/j.jiec.2016.12.012.
Mu, Y., Peng, Y., &Lauten, R. A. (2016). The depression
of pyrite in selective flotation by different reagent sys-
tems – A Literature review. In Minerals Engineering
(Vols. 96–97, pp. 143–156). Elsevier Ltd. doi: 10.1016
/j.mineng.2016.06.018.
Nakhaei, F., Irannajad, M., Mohammadnejad, S.,
&Hajizadeh Omran, A. (2023). Sulfur content
reduction of iron concentrate by reverse flota-
tion. Energy Sources, Part A: Recovery, Utilization
and Environmental Effects, 45(3), 9552–9568. doi:
10.1080/15567036.2019.1679917.
Nakhaei, F., Iranajad, M., HajizadehOmran A. (2016)
Desulfurization of magnetite concentrate by flotation
with a mixture of xanthate and copper sulphate. 4th
International mine and mining industries congress and
expo and 6th Iranian mining engineering conference,
October 2016, Tehran, Iran.
Nakhaei, F., Alagha, L. Z., Corchado-Albelo, J. L.,
Heitz, M., &Munoz-Garcia, N. (2024). Sulfide
Tailings as Potential Secondary Sources of Critical
Minerals: Tellurium. MINEXCHANGE 2024 SME
Annual Conference and Expo, Society of Mining,
Metallurgy and Exploration, Jan 2024.Nakhaei, F., &
Irannajad, M. (2015). Review of literature on flotation
of Cu-Mo sulphide ores in sea water. Iranian Journal of
Marine Science and Technology, 19 (74), 1–13.
Nassar, N. T., Kim, H., Frenzel, M., Moats, M. S., &
Hayes, S. M. (2022). Global tellurium supply potential
from electrolytic copper refining. Resources, Conservation
and Recycling, 184. doi: 10.1016/j.resconrec.2022
.106434.
Ngothai, Y., Zhao, J., Zhang, Y., Zhang, J., Richmond, W.
R., Wang, H., Weng, W., Liang, W., Mei, Y., Xie, M.,
Jia, Y., Ma, H., Liu, P., &Gao, F. (n.d.). Processing
options for gold-tellurides. https://www.researchgate
.net/publication/228345145.
Ozun, S., Vaziri Hassas, B., &Miller, J. D. (2019).
Collectorless flotation of oxidized pyrite. Colloids and
Surfaces A: Physicochemical and Engineering Aspects,
561, 349–356. doi: 10.1016/j.colsurfa.2018.10.064.
Parks, G. A. (n.d.). The Isoelectric Points of Solid Oxides, Solid
Hydroxides, and Aqueous Hydroxo Complex Systems.
https://pubs.acs.org/sharingguidelines.
Pecina, E. T., Uribe, A., Nava, F., &Finch, J. A. (2006). The
role of copper and lead in the activation of pyrite in xan-
thate and non-xanthate systems. Minerals Engineering,
19(2), 172–179. doi: 10.1016/j.mineng.2005.09.024.
Peng, Y., Wang, B., &Gerson, A. (2012). The effect of
electrochemical potential on the activation of pyrite
by copper and lead ions during grinding. International
Journal of Mineral Processing, 102–103, 141–149. doi:
10.1016/j.minpro.2011.11.010.
Güler, T., Çetinkaya, S., Akdemir, Ü., Do An, T., &
Kocaba, D. (2009). Effect of Fe-Ions on Pyrite-
Xanthate Interaction in Chemically Manipulated
Electrochemical Conditions. International Journal of
Natural and Engineering Sciences,3(3),1–07.www.nobel
.gen.tr.
Guo-huaDj, G., Jing-ping, D., Hui, W., &Guan-zhoufi, Q.
(2004). Galvanic coupling and its effect on origin poten-
tial flotation system of sulfide minerals ®.
How Do We Use Tellurium? (n.d.). doi: 10.3133/fs20143077.
Jefferson, M., Yenial-Arslan, U., Evans, C., Curtis-
Morar, C., O’Donnell, R., Parbhakar-Fox, A., &
Forbes, E. (2023). Effect of pyrite textures and compo-
sition on flotation performance: A review. In Minerals
Engineering (Vol. 201). Elsevier Ltd. doi: 10.1016
/j.mineng.2023.108234.
Jiang, K., Han, Y., Liu, J., Wang, Y., Ge, W., &Zhang, D.
(2023). Experimental and theoretical study of the effect
of pH level on the surface properties and floatability
of pyrite. Applied Surface Science, 615. doi: 10.1016
/j.apsusc.2023.156350.
Liao, N., Wu, C., Xu, J., Feng, B., Wu, J., &Gong, Y.
(2020). Effect of Grinding Media on Grinding-
Flotation Behavior of Chalcopyrite and Pyrite. Frontiers
in Materials, 7. doi: 10.3389/fmats.2020.00176.
Liu, W., Cook, N. J., Ciobanu, C. L., &Gilbert, S. E.
(2019). Trace element substitution and grain-scale
compositional heterogeneity in enargite. Ore Geology
Reviews, 111. doi: 10.1016/j.oregeorev.2019.103004.
Makuei, F. M., &Senanayake, G. (2018). Extraction of
tellurium from lead and copper bearing feed materials
and interim metallurgical products – A short review.
In Minerals Engineering (Vol. 115, pp. 79–87). Elsevier
Ltd. doi: 10.1016/j.mineng.2017.10.013.
Miller, J. D., Kappes, R., Simmons, G. L., &Levier, K.
M. (2006). Pyrite activation in amyl xanthate flotation
with nitrogen. Minerals Engineering, 19(6–8), 659–
665. doi: 10.1016/j.mineng.2005.09.017.
Moslemi, H., &Gharabaghi, M. (2017). A review on
electrochemical behavior of pyrite in the froth flota-
tion process. In Journal of Industrial and Engineering
Chemistry (Vol. 47, pp. 1–18). Korean Society of
Industrial Engineering Chemistry. doi: 10.1016
/j.jiec.2016.12.012.
Mu, Y., Peng, Y., &Lauten, R. A. (2016). The depression
of pyrite in selective flotation by different reagent sys-
tems – A Literature review. In Minerals Engineering
(Vols. 96–97, pp. 143–156). Elsevier Ltd. doi: 10.1016
/j.mineng.2016.06.018.
Nakhaei, F., Irannajad, M., Mohammadnejad, S.,
&Hajizadeh Omran, A. (2023). Sulfur content
reduction of iron concentrate by reverse flota-
tion. Energy Sources, Part A: Recovery, Utilization
and Environmental Effects, 45(3), 9552–9568. doi:
10.1080/15567036.2019.1679917.
Nakhaei, F., Iranajad, M., HajizadehOmran A. (2016)
Desulfurization of magnetite concentrate by flotation
with a mixture of xanthate and copper sulphate. 4th
International mine and mining industries congress and
expo and 6th Iranian mining engineering conference,
October 2016, Tehran, Iran.
Nakhaei, F., Alagha, L. Z., Corchado-Albelo, J. L.,
Heitz, M., &Munoz-Garcia, N. (2024). Sulfide
Tailings as Potential Secondary Sources of Critical
Minerals: Tellurium. MINEXCHANGE 2024 SME
Annual Conference and Expo, Society of Mining,
Metallurgy and Exploration, Jan 2024.Nakhaei, F., &
Irannajad, M. (2015). Review of literature on flotation
of Cu-Mo sulphide ores in sea water. Iranian Journal of
Marine Science and Technology, 19 (74), 1–13.
Nassar, N. T., Kim, H., Frenzel, M., Moats, M. S., &
Hayes, S. M. (2022). Global tellurium supply potential
from electrolytic copper refining. Resources, Conservation
and Recycling, 184. doi: 10.1016/j.resconrec.2022
.106434.
Ngothai, Y., Zhao, J., Zhang, Y., Zhang, J., Richmond, W.
R., Wang, H., Weng, W., Liang, W., Mei, Y., Xie, M.,
Jia, Y., Ma, H., Liu, P., &Gao, F. (n.d.). Processing
options for gold-tellurides. https://www.researchgate
.net/publication/228345145.
Ozun, S., Vaziri Hassas, B., &Miller, J. D. (2019).
Collectorless flotation of oxidized pyrite. Colloids and
Surfaces A: Physicochemical and Engineering Aspects,
561, 349–356. doi: 10.1016/j.colsurfa.2018.10.064.
Parks, G. A. (n.d.). The Isoelectric Points of Solid Oxides, Solid
Hydroxides, and Aqueous Hydroxo Complex Systems.
https://pubs.acs.org/sharingguidelines.
Pecina, E. T., Uribe, A., Nava, F., &Finch, J. A. (2006). The
role of copper and lead in the activation of pyrite in xan-
thate and non-xanthate systems. Minerals Engineering,
19(2), 172–179. doi: 10.1016/j.mineng.2005.09.024.
Peng, Y., Wang, B., &Gerson, A. (2012). The effect of
electrochemical potential on the activation of pyrite
by copper and lead ions during grinding. International
Journal of Mineral Processing, 102–103, 141–149. doi:
10.1016/j.minpro.2011.11.010.