XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3 2221
on fundamental research and industrial applications. This
encompasses three key aspects:
1. Further studies on the surface differences of pyrite
through Density Functional Theory (DFT) sim-
ulations to explore the correlation mechanism
between pyrite (or critical minerals) and reagents,
thereby forming a new theory.
2. Designing and synthesizing novel selective green
activators to enhance the efficiency of collectors.
3. Developing the corresponding flotation circuits
and reagent systems to promote industrial appli-
cation, aiming to enhance the efficient and com-
prehensive utilization of sulfide tailings for critical
minerals enrichment.
REFERENCES
Abraitis, P. K., Pattrick, R. A. D., &Vaughan, D. J. (2004).
Variations in the compositional, textural and electri-
cal properties of natural pyrite: A review. International
Journal of Mineral Processing, 74(1–4), 41–59. doi:
10.1016/j.minpro.2003.09.002.
Altun, N. E. (2010). Pyrite Flotation: A Review. https://
www.researchgate.net/publication/236412968.
Benites, D., Torró, L., Vallance, J., Laurent, O., Valverde, P.,
Kouzmanov, K., Chelle-Michou, C., Fontboté, L.,
Valverde, P. E., &Fontboté, L. (2021). Distribution of
indium, germanium, gallium and other minor and trace
elements in polymetallic ores from a porphyry system:
The Morococha district, Peru. Ore Geology Reviews,
136, 104236. doi: 10.1016/j.oregeorev.2021.104236ï.
Bicak, O., Ekmekci, Z., Bradshaw, D. J., &Harris, P.
J. (2007). Adsorption of guar gum and CMC on
pyrite. Minerals Engineering, 20(10), 996–1002. doi:
10.1016/j.mineng.2007.03.002.
Bilal, M., Park, I., Hornn, V., Ito, M., Hassan, F. U.,
Jeon, S., &Hiroyoshi, N. (2022). The Challenges
and Prospects of Recovering Fine Copper Sulfides
from Tailings Using Different Flotation Techniques:
A Review. In Minerals (Vol. 12, Issue 5). MDPI. doi:
10.3390/min12050586.
Bulut, G., Arslan, F., &Atak, S. (2004). Flotation behav-
iors of pyrites with different chemical compositions.
Minerals and Metallurgical Processing, 21(2), 86–92.
doi: 10.1007/bf03403308.
Bulut, G., &Yenial. (2016). Effects of major ions in
recycled water on sulfide minerals flotation. Minerals
and Metallurgical Processing, 33(3), 137–143. doi:
10.19150/mmp.6750.
Can, İ. B., Özçelik, S., &Ekmekçi, Z. (2021). Effects of
pyrite texture on flotation performance of copper sulfide
ores. Minerals, 11(11). doi: 10.3390/min11111218.
Cao, Z., Chen, X., &Peng, Y. (2018). The role of sodium
sulfide in the flotation of pyrite depressed in chalcopy-
rite flotation. Minerals Engineering, 119, 93–98. doi:
10.1016/j.mineng.2018.01.029.
Castellón, C. I., Toro, N., Gálvez, E., Robles, P., Leiva, W.
H., &Jeldres, R. I. (2022). Froth Flotation of
Chalcopyrite/Pyrite Ore: A Critical Review. In
Materials (Vol. 15, Issue 19). MDPI. doi: 10.3390/
ma15196536.
Chen, J., Xu, Z., &Chen, Y. (2020). Electronic proper-
ties of sulfide minerals and floatability. In Electronic
Structure and Surfaces of Sulfide Minerals (pp. 13–81).
Elsevier. doi: 10.1016/b978-0-12-817974-1.00002-8.
Corchado-Albelo, J. L. (2023). Project Meeting RT/FS/
MST.
Corchado-Albelo, J. L., Alagha, L. Z., &Nakhaei, F.
(2024). Enrichment Feasibility of Tellurium, Gold, and
Silver from Copper Tailings. In MINEXCHANGE
2024 SME Annual Conference and Expo. Society of
Mining, Metallurgy and Exploration.
Dos Santos, E. C., De Mendonça Silva, J. C., &Duarte, H.
A. (2016). Pyrite Oxidation Mechanism by Oxygen
in Aqueous Medium. Journal of Physical Chemistry C,
120(5), 2760–2768. doi: 10.1021/acs.jpcc.5b10949.
Dos Santos, E. C., Lourenço, M. P., Pettersson, L. G.
M., &Duarte, H. A. (2017). Stability, Structure,
and Electronic Properties of the Pyrite/Arsenopyrite
Solid-Solid Interface-A DFT Study. Journal of Physical
Chemistry C, 121(14), 8042–8051. doi: 10.1021/acs
.jpcc.7b02642.
Ejtemaei, M., &Nguyen, A. V. (2017a). A comparative
study of the attachment of air bubbles onto sphaler-
ite and pyrite surfaces activated by copper sulphate.
Minerals Engineering, 109, 14–20. doi: 10.1016
/j.mineng.2017.02.008.
Ejtemaei, M., &Nguyen, A. V. (2017b). Characterisation
of sphalerite and pyrite surfaces activated by copper
sulphate. Minerals Engineering, 100, 223–232. doi:
10.1016/j.mineng.2016.11.005.
Forbes, E., Jefferson, M., Yenial-Arslan, U., Curtis-
Morar, C., &O’Donnell, R. (2024). Solving the mys-
tery of natural pyrite flotation – A mineralogy-based
approach. Minerals Engineering, 207. doi: 10.1016
/j.mineng.2023.108544.
Fuerstenau, M. C., Jameson, G. J., &Yoon, R. H. (2009).
Froth flotation :a century of innovation. Society for
Mining, Metallurgy, and Exploration.
on fundamental research and industrial applications. This
encompasses three key aspects:
1. Further studies on the surface differences of pyrite
through Density Functional Theory (DFT) sim-
ulations to explore the correlation mechanism
between pyrite (or critical minerals) and reagents,
thereby forming a new theory.
2. Designing and synthesizing novel selective green
activators to enhance the efficiency of collectors.
3. Developing the corresponding flotation circuits
and reagent systems to promote industrial appli-
cation, aiming to enhance the efficient and com-
prehensive utilization of sulfide tailings for critical
minerals enrichment.
REFERENCES
Abraitis, P. K., Pattrick, R. A. D., &Vaughan, D. J. (2004).
Variations in the compositional, textural and electri-
cal properties of natural pyrite: A review. International
Journal of Mineral Processing, 74(1–4), 41–59. doi:
10.1016/j.minpro.2003.09.002.
Altun, N. E. (2010). Pyrite Flotation: A Review. https://
www.researchgate.net/publication/236412968.
Benites, D., Torró, L., Vallance, J., Laurent, O., Valverde, P.,
Kouzmanov, K., Chelle-Michou, C., Fontboté, L.,
Valverde, P. E., &Fontboté, L. (2021). Distribution of
indium, germanium, gallium and other minor and trace
elements in polymetallic ores from a porphyry system:
The Morococha district, Peru. Ore Geology Reviews,
136, 104236. doi: 10.1016/j.oregeorev.2021.104236ï.
Bicak, O., Ekmekci, Z., Bradshaw, D. J., &Harris, P.
J. (2007). Adsorption of guar gum and CMC on
pyrite. Minerals Engineering, 20(10), 996–1002. doi:
10.1016/j.mineng.2007.03.002.
Bilal, M., Park, I., Hornn, V., Ito, M., Hassan, F. U.,
Jeon, S., &Hiroyoshi, N. (2022). The Challenges
and Prospects of Recovering Fine Copper Sulfides
from Tailings Using Different Flotation Techniques:
A Review. In Minerals (Vol. 12, Issue 5). MDPI. doi:
10.3390/min12050586.
Bulut, G., Arslan, F., &Atak, S. (2004). Flotation behav-
iors of pyrites with different chemical compositions.
Minerals and Metallurgical Processing, 21(2), 86–92.
doi: 10.1007/bf03403308.
Bulut, G., &Yenial. (2016). Effects of major ions in
recycled water on sulfide minerals flotation. Minerals
and Metallurgical Processing, 33(3), 137–143. doi:
10.19150/mmp.6750.
Can, İ. B., Özçelik, S., &Ekmekçi, Z. (2021). Effects of
pyrite texture on flotation performance of copper sulfide
ores. Minerals, 11(11). doi: 10.3390/min11111218.
Cao, Z., Chen, X., &Peng, Y. (2018). The role of sodium
sulfide in the flotation of pyrite depressed in chalcopy-
rite flotation. Minerals Engineering, 119, 93–98. doi:
10.1016/j.mineng.2018.01.029.
Castellón, C. I., Toro, N., Gálvez, E., Robles, P., Leiva, W.
H., &Jeldres, R. I. (2022). Froth Flotation of
Chalcopyrite/Pyrite Ore: A Critical Review. In
Materials (Vol. 15, Issue 19). MDPI. doi: 10.3390/
ma15196536.
Chen, J., Xu, Z., &Chen, Y. (2020). Electronic proper-
ties of sulfide minerals and floatability. In Electronic
Structure and Surfaces of Sulfide Minerals (pp. 13–81).
Elsevier. doi: 10.1016/b978-0-12-817974-1.00002-8.
Corchado-Albelo, J. L. (2023). Project Meeting RT/FS/
MST.
Corchado-Albelo, J. L., Alagha, L. Z., &Nakhaei, F.
(2024). Enrichment Feasibility of Tellurium, Gold, and
Silver from Copper Tailings. In MINEXCHANGE
2024 SME Annual Conference and Expo. Society of
Mining, Metallurgy and Exploration.
Dos Santos, E. C., De Mendonça Silva, J. C., &Duarte, H.
A. (2016). Pyrite Oxidation Mechanism by Oxygen
in Aqueous Medium. Journal of Physical Chemistry C,
120(5), 2760–2768. doi: 10.1021/acs.jpcc.5b10949.
Dos Santos, E. C., Lourenço, M. P., Pettersson, L. G.
M., &Duarte, H. A. (2017). Stability, Structure,
and Electronic Properties of the Pyrite/Arsenopyrite
Solid-Solid Interface-A DFT Study. Journal of Physical
Chemistry C, 121(14), 8042–8051. doi: 10.1021/acs
.jpcc.7b02642.
Ejtemaei, M., &Nguyen, A. V. (2017a). A comparative
study of the attachment of air bubbles onto sphaler-
ite and pyrite surfaces activated by copper sulphate.
Minerals Engineering, 109, 14–20. doi: 10.1016
/j.mineng.2017.02.008.
Ejtemaei, M., &Nguyen, A. V. (2017b). Characterisation
of sphalerite and pyrite surfaces activated by copper
sulphate. Minerals Engineering, 100, 223–232. doi:
10.1016/j.mineng.2016.11.005.
Forbes, E., Jefferson, M., Yenial-Arslan, U., Curtis-
Morar, C., &O’Donnell, R. (2024). Solving the mys-
tery of natural pyrite flotation – A mineralogy-based
approach. Minerals Engineering, 207. doi: 10.1016
/j.mineng.2023.108544.
Fuerstenau, M. C., Jameson, G. J., &Yoon, R. H. (2009).
Froth flotation :a century of innovation. Society for
Mining, Metallurgy, and Exploration.