XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3 2135
García-Leiva, B., Teixeira, L. A. C., &Torem, M. L. (2019).
Degradation of xanthate in waters by hydrogen perox-
ide, fenton and simulated solar photo-fenton processes.
Journal of Materials Research and Technology, 8(6),
5698–5706. doi: 10.1016/j.jmrt.2019.09.037.
Ghosh, M. K., Poinern, G. E. J., Issa, T. B., &Singh, P.
(2012). Arsenic adsorption on goethite nanoparticles
produced through hydrazine sulfate assisted synthesis
method. Korean Journal of Chemical Engineering,
29(1), 95–102. doi: 10.1007/s11814-011-0137-y.
Horasan, U., Tanriverdi, M., Ciçek, T., &Polat, M.
(2020). Investigating the effects of ultrasonic energy
on the flotation behavior of pyrite and galena miner-
als. Physicochemical Problems of Mineral Processing,
56(3), 538–547. doi: 10.37190/PPMP/120291.
Huang, G., &Grano, S. (2006). Galvanic interaction
between grinding media and arsenopyrite and its
effect on flotation. International Journal of Mineral
Processing, 78(3), 182–197. doi: 10.1016/j.minpro
.2005.10.008.
Janzen, M. P., Nicholson, R. v, &Scharer, J. M. (2000).
Pyrrhotite reaction kinetics: reaction rates for oxida-
tion by oxygen, ferric iron, and for nonoxidative dis-
solution. Geochimica et Cosmochimica Acta, 64(9),
1511–1522. doi: 10.1016/S0016-7037(99)00421-4.
Martin, C. J., McIvor, R. E., Finch, J. A., &Rao, S. R.
(1991). Review of the effect of grinding media on flota-
tion of sulphide minerals. Minerals Engineering, 4(2),
121–132. doi: 10.1016/0892-6875(91)90028-T.
Moslemi, H., &Gharabaghi, M. (2017). A review on
electrochemical behavior of pyrite in the froth flota-
tion process. Journal of Industrial and Engineering
Chemistry, 47, 1–18. doi: 10.1016/j.jiec.2016.12.012.
Mu, Y., Peng, Y., &Lauten, R. A. (2016). The depression of
pyrite in selective flotation by different reagent systems
A Literature review. Minerals Engineering, 96–97,
143–156. doi: 10.1016/j.mineng.2016.06.018.
Mu, Y., Cheng, Y., &Peng, Y. (2020). The interaction of
grinding media and collector in pyrite flotation at alka-
line pH. Minerals Engineering, 152(March), 106344.
doi: 10.1016/j.mineng.2020.106344.
Mu, Y., &Peng, Y. (2019). The role of sodium metabi-
sulphite in depressing pyrite in chalcopyrite flotation
using saline water. Minerals Engineering, 142(May),
105921. doi: 10.1016/j.mineng.2019.105921.
Nadeif, A., Taha, Y., Bouzahzah, H., Hakkou, R., &
Benzaazoua, M. (2019). Desulfurization of the
Old Tailings at the Au-Ag-Cu Tiouit Mine (Anti-
Atlas Morocco). Minerals, 9(7), 401. doi: 10.3390
/min9070401.
Oberle, B., Brereton, D., &Mihaylova, A. (2020). Towards
Zero Harm: A Compendium of Papers Prepared for
the Global Tailings Review.
Paktunc, A., &Davé, N. (2000). Mineralogy of pyritic
waste rock leached by column experiments and predic-
tion of acid mine drainage. In Applied Mineralogy in
Research, Economy, Technology, Ecology and Culture,
Proceedings of the 6th International Congress on
Applied Mineralogy, ICAM, 621–623.
Peng, H., Wu, D., &Abdelmonem, M. (2017). Results
in Physics Flotation performances and surface prop-
erties of chalcopyrite with xanthate collector added
before and after grinding. 7, 3567–3573. doi: 10.1016
/j.rinp.2017.09.028.
Peng, Y., Grano, S., Fornasiero, D., &Ralston, J. (2003).
Control of grinding conditions in the flotation of chal-
copyrite and its separation from pyrite. International
Journal of Mineral Processing, 69(1–4), 87–100. doi:
10.1016/S0301-7516(02)00119-9.
Skandrani, A., Demers, I., &Kongolo, M. (2019).
Desulfurization of aged gold-bearing mine tailings.
Minerals Engineering, 138, 195–203. doi: 10.1016
/j.mineng.2019.04.037.
Texeira, L., Calisaya-Azpilcueta, D., Cruz, C., Botero, Y. L.,
&Cisternas, L. A. (2023). Impact of the use of seawa-
ter on acid mine drainage from mining wastes. Journal
of Cleaner Production, 383, 135516. doi: 10.1016
/j.jclepro.2022.135516.
Tercero, N., Nagaraj, D. R., &Farinato, R. (2019).
A Critical Overview of Dithiophosphinate and
Dithiophosphate Interactions with Base Metal Sulfides
and Precious Metals. In Mining, Metallurgy and
Exploration (Vol. 36, Issue 1, pp. 99–110). Springer.
doi: 10.1007/s42461-018-0039-1.
Wang, H., Tsang, Y. F., Wang, Y. nan, Sun, Y., Zhang, D.,
&Pan, X. (2018). Adsorption capacities of poorly
crystalline Fe minerals for antimonate and arsenate
removal from water: adsorption properties and effects
of environmental and chemical conditions. Clean
Technologies and Environmental Policy, 20(10),
2169–2179. doi: 10.1007/s10098-018-1552-0.
Ye, X., Gredelj, S., Skinner, W., &Grano, S. R. (2010).
Regrinding sulphide minerals—Breakage mechanisms
in milling and their influence on surface properties and
flotation behaviour. Powder Technology, 203(2), 133–
147. doi: 10.1016/j.powtec.2010.05.002.
Previous Page Next Page