XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3 2113
[7] T.C. Kawatra, S. K., Eisele, Causes and significance
of inflections in hydrocyclone efficiency curves, in:
M. and E. The Society for Mining (Ed.), SME Annu.
Conf. -Adv. Comminution, Little ton, 2006.
[8] L.R. Plitt, J.A. Finch, B.C. Flintoff, Modeling the
hydrocyclone classifier, in: Eur. Symp. Part. Technol.
Amsterdam, 1980.
[9] A. Mainza, M.S. Powell, B. Knopjes, A compari-
son of different cyclones in addressing challenges in
the classification of the dual density UG2 platinum
ore, J. South African Inst. Min. Metall. 105 (2005)
341–348.
[10] Plitt L. R., A mathematical model of the hydrocy-
clone classifier, in: CIM Bull., 1976: pp. 114–122.
[11] K. Nageswararao, Further modelling and scale-up of
hydrocyclones, The University of Queensland, 1978.
[12] R.P King, A Users Guide to MODSIM, Salt Lake
City, UT, USA, 1999.
[13] D.M. Wiseman, J.M. Richardson, The Mineral
Processing Simulator, in: Second Conf. Comput.
Appl. Miner. Ind., Vancouver, 1991.
[14] T.J. Napier-Munn, S. Morrell, R.D. Morrison, T.
Kojovic, Mineral comminution circuits: their opera-
tion and optimisation (Vol. 2), Julius Kruttschnitt
Mineral Research Centre, University of Queensland.,
1996.
[15] M. Ishii, K. Mishima, Two-fluid model and hydrody-
namic constitutive relations, Nucl. Eng. Des. 82 (1984)
107–126. doi: 10.1016/0029-5493(84)90207-3.
[16] N. Mangesana, R.S. Chikuku, A.N. Mainza, I.
Govender, A.P. Van Der Westhuizen, M. Narashima,
The effect of particle sizes and solids concentration on
the rheology of silica sand based suspensions, J. South.
African Inst. Min. Metall. 108 (2008) 237–243.
[17] M. Narasimha, R. Sripriya, P.K. Banerjee, CFD mod-
elling of hydrocyclone-prediction of cut size, Int. J.
Miner. Process. 75 (2005) 53–68. doi: 10.1016/j.
minpro.2004.04.008.
[18] R.H. Davis, K.H. Birdsell, Hindered settling of
semidilute monodisperse and polydisperse suspen-
sions, AIChE J. 34 (1988) 123–129. doi: 10.1002/
aic.690340114.
[19] E. Spruijt, P.M. Biesheuvel, Sedimentation
dynamics and equilibrium profiles in multi-
component mixtures of colloidal particles., J.
Phys. Condens. Matter. 26 (2014) 075101. doi:
10.1088/0953-8984/26/7/075101.
[20] E. Ramin, D.S. Wágner, L. Yde, P.J. Binning, M.R.
Rasmussen, P.S. Mikkelsen, B.G. Plósz, A new set-
tling velocity model to describe secondary sedimenta-
tion, Water Res. 66 (2014) 447–458. doi: 10.1016/j.
watres.2014.08.034.
[21] D.K. Basson, S. Berres, R. Bürger, On models of poly-
disperse sedimentation with particle-size-specific hin-
dered-settling factors, Appl. Math. Model. 33 (2009)
1815–1835. doi: 10.1016/j.apm.2008.03.021.
[22] Z. Ha, S. Liu, Settling velocities of polydisperse con-
centrated suspensions, Can. J. Chem. Eng. 80 (2002)
783–790. doi: 10.1002/cjce.5450800501.
[23] R.A. Richardson, J. F., and Meikle, Sedimentation and
Fluidization, Part III, The Sedimentation of Uniform
Fine Particles and of Two-Component Mixtures of
Solids, Trans. Inst. Chem. Eng. 39 (1961) 348–356.
[24] A. Zeidan, S. Rohani, A. Bassi, P. Whiting, Review
and comparison of solids settling velocity models,
Rev. Chem. Eng. 19 (2003) 473–530. doi: 10.1515/
REVCE.2003.19.5.473.
[25] J.F. Richardson, W.N. Zaki, The sedimentation of a
suspension of uniform spheres under conditions of
viscous flow, Chem. Eng. Sci. 3 (1954) 65–73. doi:
10.1016/0009-2509(54)85015-9.
[26] J.H. Masliyah, Hindered settling in a multi-species
particle system, Chem. Eng. Sci. 34 (1979) 1166–
1168. doi: 10.1016/0009-2509(79)85026-5.
[27] M. Padhi, N. Mangadoddy, A.N. Mainza, M. Anand,
Study on the particle interaction in a hydrocyclone
classifier with multi-component feed blend at a high
solids content, Powder Technol. 393 (2021) 380–
396. doi: doi: 10.1016/j.powtec.2021.07.063.
[28] K. Nageswararao, D.M. Wiseman, Two empirical
hydrocyclone models revisited, 17 (2004) 671–687.
doi: 10.1016/j.mineng.2004.01.017.
[29] M. Narasimha, A.N. Mainza, P.N. Holtham, Multi
-Component modelling concept for hydrocyclone
classifier, in: 26th Int. Miner. Process. Congr., New
Delhi India, 2012: pp. 24–28.
[30] M. Narasimha, Improved computational and empiri-
cal models of hydrocyclones (PhD Thesis), University
of Queensland, 2010.
[7] T.C. Kawatra, S. K., Eisele, Causes and significance
of inflections in hydrocyclone efficiency curves, in:
M. and E. The Society for Mining (Ed.), SME Annu.
Conf. -Adv. Comminution, Little ton, 2006.
[8] L.R. Plitt, J.A. Finch, B.C. Flintoff, Modeling the
hydrocyclone classifier, in: Eur. Symp. Part. Technol.
Amsterdam, 1980.
[9] A. Mainza, M.S. Powell, B. Knopjes, A compari-
son of different cyclones in addressing challenges in
the classification of the dual density UG2 platinum
ore, J. South African Inst. Min. Metall. 105 (2005)
341–348.
[10] Plitt L. R., A mathematical model of the hydrocy-
clone classifier, in: CIM Bull., 1976: pp. 114–122.
[11] K. Nageswararao, Further modelling and scale-up of
hydrocyclones, The University of Queensland, 1978.
[12] R.P King, A Users Guide to MODSIM, Salt Lake
City, UT, USA, 1999.
[13] D.M. Wiseman, J.M. Richardson, The Mineral
Processing Simulator, in: Second Conf. Comput.
Appl. Miner. Ind., Vancouver, 1991.
[14] T.J. Napier-Munn, S. Morrell, R.D. Morrison, T.
Kojovic, Mineral comminution circuits: their opera-
tion and optimisation (Vol. 2), Julius Kruttschnitt
Mineral Research Centre, University of Queensland.,
1996.
[15] M. Ishii, K. Mishima, Two-fluid model and hydrody-
namic constitutive relations, Nucl. Eng. Des. 82 (1984)
107–126. doi: 10.1016/0029-5493(84)90207-3.
[16] N. Mangesana, R.S. Chikuku, A.N. Mainza, I.
Govender, A.P. Van Der Westhuizen, M. Narashima,
The effect of particle sizes and solids concentration on
the rheology of silica sand based suspensions, J. South.
African Inst. Min. Metall. 108 (2008) 237–243.
[17] M. Narasimha, R. Sripriya, P.K. Banerjee, CFD mod-
elling of hydrocyclone-prediction of cut size, Int. J.
Miner. Process. 75 (2005) 53–68. doi: 10.1016/j.
minpro.2004.04.008.
[18] R.H. Davis, K.H. Birdsell, Hindered settling of
semidilute monodisperse and polydisperse suspen-
sions, AIChE J. 34 (1988) 123–129. doi: 10.1002/
aic.690340114.
[19] E. Spruijt, P.M. Biesheuvel, Sedimentation
dynamics and equilibrium profiles in multi-
component mixtures of colloidal particles., J.
Phys. Condens. Matter. 26 (2014) 075101. doi:
10.1088/0953-8984/26/7/075101.
[20] E. Ramin, D.S. Wágner, L. Yde, P.J. Binning, M.R.
Rasmussen, P.S. Mikkelsen, B.G. Plósz, A new set-
tling velocity model to describe secondary sedimenta-
tion, Water Res. 66 (2014) 447–458. doi: 10.1016/j.
watres.2014.08.034.
[21] D.K. Basson, S. Berres, R. Bürger, On models of poly-
disperse sedimentation with particle-size-specific hin-
dered-settling factors, Appl. Math. Model. 33 (2009)
1815–1835. doi: 10.1016/j.apm.2008.03.021.
[22] Z. Ha, S. Liu, Settling velocities of polydisperse con-
centrated suspensions, Can. J. Chem. Eng. 80 (2002)
783–790. doi: 10.1002/cjce.5450800501.
[23] R.A. Richardson, J. F., and Meikle, Sedimentation and
Fluidization, Part III, The Sedimentation of Uniform
Fine Particles and of Two-Component Mixtures of
Solids, Trans. Inst. Chem. Eng. 39 (1961) 348–356.
[24] A. Zeidan, S. Rohani, A. Bassi, P. Whiting, Review
and comparison of solids settling velocity models,
Rev. Chem. Eng. 19 (2003) 473–530. doi: 10.1515/
REVCE.2003.19.5.473.
[25] J.F. Richardson, W.N. Zaki, The sedimentation of a
suspension of uniform spheres under conditions of
viscous flow, Chem. Eng. Sci. 3 (1954) 65–73. doi:
10.1016/0009-2509(54)85015-9.
[26] J.H. Masliyah, Hindered settling in a multi-species
particle system, Chem. Eng. Sci. 34 (1979) 1166–
1168. doi: 10.1016/0009-2509(79)85026-5.
[27] M. Padhi, N. Mangadoddy, A.N. Mainza, M. Anand,
Study on the particle interaction in a hydrocyclone
classifier with multi-component feed blend at a high
solids content, Powder Technol. 393 (2021) 380–
396. doi: doi: 10.1016/j.powtec.2021.07.063.
[28] K. Nageswararao, D.M. Wiseman, Two empirical
hydrocyclone models revisited, 17 (2004) 671–687.
doi: 10.1016/j.mineng.2004.01.017.
[29] M. Narasimha, A.N. Mainza, P.N. Holtham, Multi
-Component modelling concept for hydrocyclone
classifier, in: 26th Int. Miner. Process. Congr., New
Delhi India, 2012: pp. 24–28.
[30] M. Narasimha, Improved computational and empiri-
cal models of hydrocyclones (PhD Thesis), University
of Queensland, 2010.