xvi
Lithium Processing
Nickel Recovery from Nickel Sulphide Tailings Using Activated Carbon in Acidic Medium. . . . . . . . . . 3298
The Impact of Rosin Content in Fatty Acid Collectors on Spodumene Flotation. . . . . . . . . . . . . . . . 3314
Process Optimization for the Lithium Concentrate Recovery from Spodumene Ore in East Kazakhstan. . . . 3324
Near Zero-Waste Processing Routes for the Exploitation of the European Hard Rock Lithium Deposits. . . . 3334
Lithium-Aluminum-Layered Double Hydroxide Chloride (LDH) Sorbents: Quasi-Elastic
Neutron Scattering Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3343
Recovery of Lithium From Lepidolite by Mechanical Activation and Acid Leaching. . . . . . . . . . . . . . 3352
The Recovery of Critical Minerals from Pegmatite Dykes. ...........................3356
Organic Acid Leaching of a Lithium-Bearing Nevada Sedimentary Claystone . . . . . . . . . . . . . . . . . 3367
Processing—Energy Storage Minerals
Awaruite Recovery by Magnetic Separation and Flotation: Nickel Concentrate with
Outstanding Characteristics ...........................................3379
Evaluating Environmentally Friendly Lixiviants for Lithium Recovery from Montmorillonite Clays. . . . . . 3387
Flowsheet Options for the Hydrometallurgical Production of Battery-Grade Manganese Salts. . . . . . . . . 3395
Process Optimization for the Direct Extraction of Lithium from α-Spodumene via NaOH-Roasting and
Water Leaching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3406
Production of Battery Grade Manganese Sulfate Monohydrate from High Carbon-Ferromanganese
Smelter Waste Streams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3419
Production of High Purity Manganese Sulphate for the Battery Market . . . . . . . . . . . . . . . . . . . . 3426
The Oxidation of Ferrous Ions as a Limitation to the Purification of Leaching Solutions by Iron Precipitation. 3436
Tailings
Approaches to Tailings Dewatering
Developments in High Tonnage Paste Thickening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3447
Saving Water and Tailing Dam Space for Medium Size Mines— A Case Study Using
Centrifuge Technology to Recover Process Water from Mine Tailings. .....................3451
Tailings Dewatering by Tannic Acid-Mediated Polymeric Flocculation and Pressure Filtration. . . . . . . . . 3461
The Impact of Pressure Filter Media Permeability on Filtrate Suspended Solids. ................3471
Transforming Tailings Management with the Cavex ® DE Classification Technology and
Innovative Processing Strategies. ........................................3476
Ultrasonic Dispersion as a Tool to Recover Ultrafine Particles from Hydrated Iron Ore .............3486
Reprocessing of Tailings I
Conversion of Mine Tailings into Cementitious Materials—A Conceptual Framework. ............3492
Effect of Inorganic Salts on Direct Mineral Carbonation of Natural Olivine Silicate Minerals . . . . . . . . . 3500
Removal of Pyrite from Mine Tailings by Cementation-Magnetic Separation Method for
AMD Prevention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⤀ 3509
Unlocking Value and Sustainability: Reprocessing Cantung Historical Mine Tailings for
Tungsten and Copper. .............................................3514
Utilization of Bayer Process Tailings for Recovery of Base Metals and Critical Elements . . . . . . . . . . . . ⤀ 3526
Lithium Processing
Nickel Recovery from Nickel Sulphide Tailings Using Activated Carbon in Acidic Medium. . . . . . . . . . 3298
The Impact of Rosin Content in Fatty Acid Collectors on Spodumene Flotation. . . . . . . . . . . . . . . . 3314
Process Optimization for the Lithium Concentrate Recovery from Spodumene Ore in East Kazakhstan. . . . 3324
Near Zero-Waste Processing Routes for the Exploitation of the European Hard Rock Lithium Deposits. . . . 3334
Lithium-Aluminum-Layered Double Hydroxide Chloride (LDH) Sorbents: Quasi-Elastic
Neutron Scattering Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3343
Recovery of Lithium From Lepidolite by Mechanical Activation and Acid Leaching. . . . . . . . . . . . . . 3352
The Recovery of Critical Minerals from Pegmatite Dykes. ...........................3356
Organic Acid Leaching of a Lithium-Bearing Nevada Sedimentary Claystone . . . . . . . . . . . . . . . . . 3367
Processing—Energy Storage Minerals
Awaruite Recovery by Magnetic Separation and Flotation: Nickel Concentrate with
Outstanding Characteristics ...........................................3379
Evaluating Environmentally Friendly Lixiviants for Lithium Recovery from Montmorillonite Clays. . . . . . 3387
Flowsheet Options for the Hydrometallurgical Production of Battery-Grade Manganese Salts. . . . . . . . . 3395
Process Optimization for the Direct Extraction of Lithium from α-Spodumene via NaOH-Roasting and
Water Leaching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3406
Production of Battery Grade Manganese Sulfate Monohydrate from High Carbon-Ferromanganese
Smelter Waste Streams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3419
Production of High Purity Manganese Sulphate for the Battery Market . . . . . . . . . . . . . . . . . . . . 3426
The Oxidation of Ferrous Ions as a Limitation to the Purification of Leaching Solutions by Iron Precipitation. 3436
Tailings
Approaches to Tailings Dewatering
Developments in High Tonnage Paste Thickening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3447
Saving Water and Tailing Dam Space for Medium Size Mines— A Case Study Using
Centrifuge Technology to Recover Process Water from Mine Tailings. .....................3451
Tailings Dewatering by Tannic Acid-Mediated Polymeric Flocculation and Pressure Filtration. . . . . . . . . 3461
The Impact of Pressure Filter Media Permeability on Filtrate Suspended Solids. ................3471
Transforming Tailings Management with the Cavex ® DE Classification Technology and
Innovative Processing Strategies. ........................................3476
Ultrasonic Dispersion as a Tool to Recover Ultrafine Particles from Hydrated Iron Ore .............3486
Reprocessing of Tailings I
Conversion of Mine Tailings into Cementitious Materials—A Conceptual Framework. ............3492
Effect of Inorganic Salts on Direct Mineral Carbonation of Natural Olivine Silicate Minerals . . . . . . . . . 3500
Removal of Pyrite from Mine Tailings by Cementation-Magnetic Separation Method for
AMD Prevention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⤀ 3509
Unlocking Value and Sustainability: Reprocessing Cantung Historical Mine Tailings for
Tungsten and Copper. .............................................3514
Utilization of Bayer Process Tailings for Recovery of Base Metals and Critical Elements . . . . . . . . . . . . ⤀ 3526