1586 XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3
Menzies, A.H., Tagle, R., Reinhardt, F., Hirschle, C.,
Schellkopf, L.J., Kelly, N., 2022. High-speed Micro-
XRF Analysis of Rock Samples and Drill Cores.
Microscopy and Microanalysis 28, 650–651. doi:
10.1017/S1431927622003117.
Nikonow, W., Rammlmair, D., 2017. Automated min-
eralogy based on micro-energy-dispersive X-ray fluo-
rescence microscopy (µ-EDXRF) applied to plutonic
rock thin sections in comparison to a mineral libera-
tion analyzer. Geosci. Instrum. Method. Data Syst. 6,
429–437. doi: 10.5194/gi-6-429-2017.
Nikonow, W., Rammlmair, D., Meima, J.A.,
Schodlok, M.C., 2019. Advanced mineral charac-
terization and petrographic analysis by μ-EDXRF,
LIBS, HSI and hyperspectral data merging.
Miner Petrol 113, 417–431. doi: 10.1007/s00710
-019-00657-z.
Paradis, M.-C.M., Doucet, F.R., Rifai, K., Özcan, L.Ç.,
Azami, N., Vidal, F., 2021. ECORE: A New Fast
Automated Quantitative Mineral and Elemental
Core Scanner. Minerals 11, 859. doi: 10.3390
/min11080859.
Penner, S.S. (Ed.), 1978. Lithium, needs and resources:
proceedings of a symposium held in Corning, New
York, 12–14 October 1977, 1st ed. ed. Pergamon
Press, Oxford New York.
Richiero, S., Sandoval, C., Oberlin, C., Schmitt, A.,
Lefevre, J.-C., Bensalah-Ledoux, A., Prigent, D.,
Coquidé, C., Valois, A., Giletti, F., Pelascini, F.,
Duponchel, L., Dugourd, P., Comby-Zerbino, C., Motto-
Ros, V., 2022. Archaeological Mortar Characterization
Using Laser-Induced Breakdown Spectroscopy (LIBS)
Imaging Microscopy. Appl Spectrosc 76, 978–987.
doi: 10.1177/00037028211071141.
Robb, L., 2005. Introduction to Ore-Forming Processes
386.
Rose, H.J., Adler, I., Flanagan, F.J., 1963. X-Ray
Fluorescence Analysis of the Light Elements in
Rocks and Minerals. Appl Spectrosc 17, 81–85. doi:
10.1366/000370263789621105.
Sutherland, D.N., Gottlieb, P., 1991. Application of
automated quantitative mineralogy in mineral pro-
cessing. Minerals Engineering 4, 753–762. doi:
10.1016/0892-6875(91)90063-2.
Swain, B., 2017. Recovery and recycling of lithium: A
review. Separation and Purification Technology 172,
388–403. doi: 10.1016/j.seppur.2016.08.031.
Tkachev, A.V., Rundqvist, D.V., Vishnevskaya, N.A., 2018.
Metallogeny of lithium through geological time. Russ.
J. Earth Sci. 18, 1–13. doi: 10.2205/2018ES000635.
Tolosana-Delgado, R., von Eynatten, H., Karius, V., 2011.
Constructing modal mineralogy from geochemi-
cal composition: A geometric-Bayesian approach.
Computers &Geosciences 37, 677–691. doi:
10.1016/j.cageo.2010.08.005.
Vanderbruggen, A., Gugala, E., Blannin, R., Bachmann, K.,
Serna-Guerrero, R., Rudolph, M., 2021. Automated
mineralogy as a novel approach for the compositional
and textural characterization of spent lithium-ion bat-
teries. Minerals Engineering 169, 106924. https://doi
.org/10.1016/j.mineng.2021.106924.
Young, K.E., Evans, C.A., Hodges, K.V., Bleacher, J.E.,
Graff, T.G., 2016. A review of the handheld X-ray fluo-
rescence spectrometer as a tool for field geologic inves-
tigations on Earth and in planetary surface exploration.
Applied Geochemistry 72, 77–87. doi: 10.1016/j.
apgeochem.2016.07.003
Previous Page Next Page