1440 XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3
New equipment will also be soon available regard-
ing laboratory processing equipment for hematite separa-
tion (both density and magnetic separation). Subsequent
method development will be needed to test for potential
qualities of new products both hematite and apatite related.
Furthermore, specific deposit and ore property chal-
lenges need to be catered for in the future. For LKAB, one
of these challenges relates to identification of magnetite/
hematite vs maghemite in an early in-situ, run of deposit
stage. Testing and potential implementation of new equip-
ment, e.g., multi-sensor drill core scanners, magnetic reso-
nance instruments are part of the future works for LKAB
process mineralogists.
REFERENCES
Andersson, U.B., Kalmbach, J., Gilbricht, S., Seifert, T.,
Karlsson, A.. and Krolop, P. 2022. Preliminary data on
sulphides at Kiruna, Sweden. In Proceedings of the 16th
Biennial SGA Conference, Rotorua, New Zealand.
Aupers, K. 2014. Gangue mineralogy and deportment of
deleterious elements in the iron ore of the Kiirunavaara
deposit, Sweden. M.Sc. thesis, TU Bergakademie
Freiberg, Germany. 167 p.
Beher, D. 2021. A compositional trace element study
between ore-gangue mineral pairs in iron oxide apa-
tite ores of the Kiirunavaara and Per Geijer ore bodies.
M.Sc. Thesis, Aalto University, Finland.
Bergman, S., Kübler, L., Martinsson, O. 2001. Description
of regional geological and geophysical maps of northern
Norrbotten county (east of the Caledonian orogen), Ba 56,
Uppsala: Sveriges geologiska undersökning.
Bergström, B., and Anttila, A. 1973. MALNING: Försök i
laboratorie- och pilotskala jamfört med driftsmalning.
Intern Utredning 6/52, Internal report in Swedish, 10
p.
Drugge, L. 2009. Validering av metod för simulering av
framtida anrikningsresultat. LKAB Utredning 09-775,
Internal Report in Swedish, 65 p.
Edfelt, Å., Armstrong, R.N., Smith, M., and Martinsson,
O. 2005. Alteration paragenesis and mineral chemistry
of the Tjårrojåkka apatite–iron and Cu (-Au) occur-
rences, Kiruna area, northern Sweden. Mineralium
Deposita 40(4): 409–434.
Frietsch, R. 1966. Geology and ores of the Svappavaara
area, northern Sweden. Uppsala: Sveriges Geologiska
Undersökning.
Frietsch, R. 1978. On the magmatic origin of iron ores of
the Kiruna type. Economic Geology 73(4): 478– 485.
Geijer, P. 1910. Igneous rocks and iron ores of Kiirunavaara,
Luossavaara and Tuollavaara. Economic Geology
5(8):699–718.
Geijer, P. 1931. The iron ores of Kiruna type: geographical dis-
tribution, geological characters, and origin, Ser. C (367),
Uppsala: Sveriges geologiska undersökning.
Kalmbach, J. 2022. Sulfides in iron oxide-apatite and
greenstone-hosted copper deposits in the Kiruna area,
northern Sweden—characterization by mineralogy,
mineral chemistry and sulfur isotopy. M.Sc. Thesis,
TU Bergakademie Freiberg, Germany. 213 p.
Krolop, P., Niiranen, K., Gilbricht, S., and Seifert, T. 2019.
Ore type characterization of the Per Geijer iron ore
deposits in Kiruna, Northern Sweden. In Proceedings
of the Iron Ore 2019 Conference, Perth, Australia, The
Australasian Institute of Mining and Metallurgy.
Krolop, P. 2022. The Per Geijer iron ore deposits:
Characterization based on mineralogical, geochemi-
cal and process mineralogical methods. Doctoral
Dissertation, TU Bergakademie Freiberg, Germany.
190 p.
Krolop P., Nebel-Jacobsen Y., Seifert T. 2022. Fe isotope
systematics indicate magmatic origin of the Per Geijer
iron oxide-apatite deposits in northern Sweden. SEG
2022, Denver, USA.
Krolop, P., Niiranen, K., Gilbricht, S. and Seifert, T. 2022.
Process mineralogical assessment of the grinding prod-
ucts of the Per Geijer iron oxide-apatite deposits.
Mineral Processing and Extractive Metallurgy Review,
43(8): 1014–1020.
Krolop, P., Larsson, A., Körtge, M. 2022. Per Geijer Deep
geometallurgical tests. LKAB internal report.
Krolop, P., Andersson, U., McFall, K., Kalmbach, J.,
Gilbricht, S., Seifert, T. 2023. Potential for sulphide-
hosted by-products from the iron oxide-apatite depos-
its at Kiruna? A mineralogical perspective. SGA 2023,
Zurich, Switzerland.
Lahtinen, R. Nironen, M. Korja, A. 2003. Palaeoproterozoic
orogenic evolution of the Fennoscandian Shield
at 1.92–1.77 Ga with notes on the metallogeny of
FeOx–Cu–Au, VMS, and orogenic gold deposits. In
Proceedings of the Seventh Biennial SGA Conference
“Mineral Exploration and Sustainable Development,”
Athens, Greece.
Lahtinen, R. Korja, A. Nironen, M. 2005. Paleoproterozoic
tectonic evolution. In Developments in Precambrian
Geology Volume 14, Amsterdam, The Netherlands,
Elsevier.
New equipment will also be soon available regard-
ing laboratory processing equipment for hematite separa-
tion (both density and magnetic separation). Subsequent
method development will be needed to test for potential
qualities of new products both hematite and apatite related.
Furthermore, specific deposit and ore property chal-
lenges need to be catered for in the future. For LKAB, one
of these challenges relates to identification of magnetite/
hematite vs maghemite in an early in-situ, run of deposit
stage. Testing and potential implementation of new equip-
ment, e.g., multi-sensor drill core scanners, magnetic reso-
nance instruments are part of the future works for LKAB
process mineralogists.
REFERENCES
Andersson, U.B., Kalmbach, J., Gilbricht, S., Seifert, T.,
Karlsson, A.. and Krolop, P. 2022. Preliminary data on
sulphides at Kiruna, Sweden. In Proceedings of the 16th
Biennial SGA Conference, Rotorua, New Zealand.
Aupers, K. 2014. Gangue mineralogy and deportment of
deleterious elements in the iron ore of the Kiirunavaara
deposit, Sweden. M.Sc. thesis, TU Bergakademie
Freiberg, Germany. 167 p.
Beher, D. 2021. A compositional trace element study
between ore-gangue mineral pairs in iron oxide apa-
tite ores of the Kiirunavaara and Per Geijer ore bodies.
M.Sc. Thesis, Aalto University, Finland.
Bergman, S., Kübler, L., Martinsson, O. 2001. Description
of regional geological and geophysical maps of northern
Norrbotten county (east of the Caledonian orogen), Ba 56,
Uppsala: Sveriges geologiska undersökning.
Bergström, B., and Anttila, A. 1973. MALNING: Försök i
laboratorie- och pilotskala jamfört med driftsmalning.
Intern Utredning 6/52, Internal report in Swedish, 10
p.
Drugge, L. 2009. Validering av metod för simulering av
framtida anrikningsresultat. LKAB Utredning 09-775,
Internal Report in Swedish, 65 p.
Edfelt, Å., Armstrong, R.N., Smith, M., and Martinsson,
O. 2005. Alteration paragenesis and mineral chemistry
of the Tjårrojåkka apatite–iron and Cu (-Au) occur-
rences, Kiruna area, northern Sweden. Mineralium
Deposita 40(4): 409–434.
Frietsch, R. 1966. Geology and ores of the Svappavaara
area, northern Sweden. Uppsala: Sveriges Geologiska
Undersökning.
Frietsch, R. 1978. On the magmatic origin of iron ores of
the Kiruna type. Economic Geology 73(4): 478– 485.
Geijer, P. 1910. Igneous rocks and iron ores of Kiirunavaara,
Luossavaara and Tuollavaara. Economic Geology
5(8):699–718.
Geijer, P. 1931. The iron ores of Kiruna type: geographical dis-
tribution, geological characters, and origin, Ser. C (367),
Uppsala: Sveriges geologiska undersökning.
Kalmbach, J. 2022. Sulfides in iron oxide-apatite and
greenstone-hosted copper deposits in the Kiruna area,
northern Sweden—characterization by mineralogy,
mineral chemistry and sulfur isotopy. M.Sc. Thesis,
TU Bergakademie Freiberg, Germany. 213 p.
Krolop, P., Niiranen, K., Gilbricht, S., and Seifert, T. 2019.
Ore type characterization of the Per Geijer iron ore
deposits in Kiruna, Northern Sweden. In Proceedings
of the Iron Ore 2019 Conference, Perth, Australia, The
Australasian Institute of Mining and Metallurgy.
Krolop, P. 2022. The Per Geijer iron ore deposits:
Characterization based on mineralogical, geochemi-
cal and process mineralogical methods. Doctoral
Dissertation, TU Bergakademie Freiberg, Germany.
190 p.
Krolop P., Nebel-Jacobsen Y., Seifert T. 2022. Fe isotope
systematics indicate magmatic origin of the Per Geijer
iron oxide-apatite deposits in northern Sweden. SEG
2022, Denver, USA.
Krolop, P., Niiranen, K., Gilbricht, S. and Seifert, T. 2022.
Process mineralogical assessment of the grinding prod-
ucts of the Per Geijer iron oxide-apatite deposits.
Mineral Processing and Extractive Metallurgy Review,
43(8): 1014–1020.
Krolop, P., Larsson, A., Körtge, M. 2022. Per Geijer Deep
geometallurgical tests. LKAB internal report.
Krolop, P., Andersson, U., McFall, K., Kalmbach, J.,
Gilbricht, S., Seifert, T. 2023. Potential for sulphide-
hosted by-products from the iron oxide-apatite depos-
its at Kiruna? A mineralogical perspective. SGA 2023,
Zurich, Switzerland.
Lahtinen, R. Nironen, M. Korja, A. 2003. Palaeoproterozoic
orogenic evolution of the Fennoscandian Shield
at 1.92–1.77 Ga with notes on the metallogeny of
FeOx–Cu–Au, VMS, and orogenic gold deposits. In
Proceedings of the Seventh Biennial SGA Conference
“Mineral Exploration and Sustainable Development,”
Athens, Greece.
Lahtinen, R. Korja, A. Nironen, M. 2005. Paleoproterozoic
tectonic evolution. In Developments in Precambrian
Geology Volume 14, Amsterdam, The Netherlands,
Elsevier.