XXXI International Mineral Processing Congress 2024 Proceedings/Washington, DC/Sep 29–Oct 3 1145
Kruggel-Emden, H., S. Rickelt, S. Wirtz, and V. Scherer.
2009. ‘A Numerical Study on the Sensitivity of the
Discrete Element Method for Hopper Discharge.’
Journal of Pressure Vessel Technology 131 (3). doi:
10.1115/1.3122022.
Kumar, Raj, Arun K Jana, Srikanth R Gopireddy, and
Chetan M Patel. 2020. ‘Effect of Horizontal Vibrations
on Mass Flow Rate and Segregation during Hopper
Discharge: Discrete Element Method Approach.’
Sādhanā 45 (1): 67. doi: 10.1007/s12046-020-1300-0.
Kumar, Raj, Chetan M. Patel, Arun K. Jana, and Srikanth
R. Gopireddy. 2018. ‘Prediction of Hopper Discharge
Rate Using Combined Discrete Element Method and
Artificial Neural Network.’ Advanced Powder Technology
29 (11): 2822–34. doi: 10.1016/j.apt.2018.08.002.
Kwon, Jihoe, and Dong-Woo Ryu. 2020. ‘Investigation
of Discharge Characteristics of Rod-Shaped Particles
in a Hopper: Experimental and Numerical Studies
Using Polygonal/Polyhedral DEM.’ Advanced
Powder Technology 31 (10): 4207–21. doi: 10.1016
/j.apt.2020.08.024.
Lattanzi, Aaron M., and Jonathan J. Stickel. 2020. ‘Hopper
Flows of Mixtures of Spherical and Rod‐like Particles
via the Multisphere Method.’ AIChE Journal 66 (4).
doi: 10.1002/aic.16882.
Liu, Sida, Zongyan Zhou, Ruiping Zou, David Pinson,
and Aibing Yu. 2013. ‘Microscopic Analysis of Hopper
Flow with Ellipsoidal Particles.’ In, 694–97. doi:
10.1063/1.4812026.
Mack, Stuart, Paul Langston, Colin Webb, and Trevor York.
2011. ‘Experimental Validation of Polyhedral Discrete
Element Model.’ Powder Technology 214 (3): 431–42.
doi: 10.1016/j.powtec.2011.08.043.
Méndez, David, Raúl Cruz Hidalgo, and Diego Maza. 2021.
‘The Role of the Hopper Angle in Silos: Experimental
and CFD Analysis.’ Granular Matter 23 (2): 34. doi:
10.1007/s10035-021-01094-6.
Mittal, Aman, Narasimha Mangadoddy, and Raja Banerjee.
2023. ‘Development of Three-Dimensional GPU DEM
Code–Benchmarking, Validation, and Application in
Mineral Processing.’ Computational Particle Mechanics
10 (6): 1533–56. doi: 10.1007/s40571-023-00571-4.
Norouzi, Hamid Reza, Reza Zarghami, Rahmat Sotudeh‐
Gharebagh, and Navid Mostoufi. 2016. Coupled CFD-
DEM Modeling. Wiley. doi: 10.1002/9781119005315.
Pascot, Arthur, Naïma Gaudel, Sergiy Antonyuk, Jérémy
Bianchin, and Sébastien Kiesgen De Richter. 2020.
‘Influence of Mechanical Vibrations on Quasi-2D Silo
Discharge of Spherical Particles.’ Chemical Engineering
Science 224 (October):115749. doi: 10.1016/j.ces.2020
.115749.
Stainforth, P.T., and R.C. Ashley. 1973. ‘An
Analytical Hopper Design Method for Cohesive
Powders.’ Powder Technology 7 (4): 215–43. doi:
10.1016/0032-5910(73)80027-0.
Tao, He, Wenqi Zhong, and Baosheng Jin. 2014. ‘Flow
Behavior of Non-Spherical Particle Flowing in Hopper.’
Frontiers in Energy 8 (3): 315–21. doi: 10.1007/
s11708-014-0331-9.
Thielicke, William, and René Sonntag. 2021. ‘Particle
Image Velocimetry for MATLAB: Accuracy and
Enhanced Algorithms in PIVlab.’ Journal of Open
Research Software 9 (1): 12. doi: 10.5334/jors.334.
Williams, John R., and Alex P. Pentland. 1992.
‘Superquadrics and Modal Dynamics for Discrete
Elements in Interactive Design.’ Engineering
Computations 9 (2): 115–27. doi: 10.1108/eb023852.
Yang, Shie-Chen, and Shu-San Hsiau. 2001. ‘The
Simulation and Experimental Study of Granular
Materials Discharged from a Silo with the Placement
of Inserts.’ Powder Technology 120 (3): 244–55. doi:
10.1016/S0032-5910(01)00277-7.
Zatloukal, Zdenek, and Zdenka Šklubalová. 2012.
‘Effect of Orifice Geometry on Particle Discharge
Rate for a Flat-Bottomed, Cylindrical Hopper.’
Particulate Science and Technology 30 (4): 316–28. doi:
10.1080/02726351.2011.573839.
Zhang, Zhongliang, Yongqi Liu, Bin Zheng, Ruiyang Li,
and Peng Sun. 2021. ‘Discharge Characteristics of
Binary Particles in a Rectangular Hopper with Inclined
Bottom.’ Computational Particle Mechanics 8 (2): 315–
24. doi: 10.1007/s40571-020-00332-7.
Kruggel-Emden, H., S. Rickelt, S. Wirtz, and V. Scherer.
2009. ‘A Numerical Study on the Sensitivity of the
Discrete Element Method for Hopper Discharge.’
Journal of Pressure Vessel Technology 131 (3). doi:
10.1115/1.3122022.
Kumar, Raj, Arun K Jana, Srikanth R Gopireddy, and
Chetan M Patel. 2020. ‘Effect of Horizontal Vibrations
on Mass Flow Rate and Segregation during Hopper
Discharge: Discrete Element Method Approach.’
Sādhanā 45 (1): 67. doi: 10.1007/s12046-020-1300-0.
Kumar, Raj, Chetan M. Patel, Arun K. Jana, and Srikanth
R. Gopireddy. 2018. ‘Prediction of Hopper Discharge
Rate Using Combined Discrete Element Method and
Artificial Neural Network.’ Advanced Powder Technology
29 (11): 2822–34. doi: 10.1016/j.apt.2018.08.002.
Kwon, Jihoe, and Dong-Woo Ryu. 2020. ‘Investigation
of Discharge Characteristics of Rod-Shaped Particles
in a Hopper: Experimental and Numerical Studies
Using Polygonal/Polyhedral DEM.’ Advanced
Powder Technology 31 (10): 4207–21. doi: 10.1016
/j.apt.2020.08.024.
Lattanzi, Aaron M., and Jonathan J. Stickel. 2020. ‘Hopper
Flows of Mixtures of Spherical and Rod‐like Particles
via the Multisphere Method.’ AIChE Journal 66 (4).
doi: 10.1002/aic.16882.
Liu, Sida, Zongyan Zhou, Ruiping Zou, David Pinson,
and Aibing Yu. 2013. ‘Microscopic Analysis of Hopper
Flow with Ellipsoidal Particles.’ In, 694–97. doi:
10.1063/1.4812026.
Mack, Stuart, Paul Langston, Colin Webb, and Trevor York.
2011. ‘Experimental Validation of Polyhedral Discrete
Element Model.’ Powder Technology 214 (3): 431–42.
doi: 10.1016/j.powtec.2011.08.043.
Méndez, David, Raúl Cruz Hidalgo, and Diego Maza. 2021.
‘The Role of the Hopper Angle in Silos: Experimental
and CFD Analysis.’ Granular Matter 23 (2): 34. doi:
10.1007/s10035-021-01094-6.
Mittal, Aman, Narasimha Mangadoddy, and Raja Banerjee.
2023. ‘Development of Three-Dimensional GPU DEM
Code–Benchmarking, Validation, and Application in
Mineral Processing.’ Computational Particle Mechanics
10 (6): 1533–56. doi: 10.1007/s40571-023-00571-4.
Norouzi, Hamid Reza, Reza Zarghami, Rahmat Sotudeh‐
Gharebagh, and Navid Mostoufi. 2016. Coupled CFD-
DEM Modeling. Wiley. doi: 10.1002/9781119005315.
Pascot, Arthur, Naïma Gaudel, Sergiy Antonyuk, Jérémy
Bianchin, and Sébastien Kiesgen De Richter. 2020.
‘Influence of Mechanical Vibrations on Quasi-2D Silo
Discharge of Spherical Particles.’ Chemical Engineering
Science 224 (October):115749. doi: 10.1016/j.ces.2020
.115749.
Stainforth, P.T., and R.C. Ashley. 1973. ‘An
Analytical Hopper Design Method for Cohesive
Powders.’ Powder Technology 7 (4): 215–43. doi:
10.1016/0032-5910(73)80027-0.
Tao, He, Wenqi Zhong, and Baosheng Jin. 2014. ‘Flow
Behavior of Non-Spherical Particle Flowing in Hopper.’
Frontiers in Energy 8 (3): 315–21. doi: 10.1007/
s11708-014-0331-9.
Thielicke, William, and René Sonntag. 2021. ‘Particle
Image Velocimetry for MATLAB: Accuracy and
Enhanced Algorithms in PIVlab.’ Journal of Open
Research Software 9 (1): 12. doi: 10.5334/jors.334.
Williams, John R., and Alex P. Pentland. 1992.
‘Superquadrics and Modal Dynamics for Discrete
Elements in Interactive Design.’ Engineering
Computations 9 (2): 115–27. doi: 10.1108/eb023852.
Yang, Shie-Chen, and Shu-San Hsiau. 2001. ‘The
Simulation and Experimental Study of Granular
Materials Discharged from a Silo with the Placement
of Inserts.’ Powder Technology 120 (3): 244–55. doi:
10.1016/S0032-5910(01)00277-7.
Zatloukal, Zdenek, and Zdenka Šklubalová. 2012.
‘Effect of Orifice Geometry on Particle Discharge
Rate for a Flat-Bottomed, Cylindrical Hopper.’
Particulate Science and Technology 30 (4): 316–28. doi:
10.1080/02726351.2011.573839.
Zhang, Zhongliang, Yongqi Liu, Bin Zheng, Ruiyang Li,
and Peng Sun. 2021. ‘Discharge Characteristics of
Binary Particles in a Rectangular Hopper with Inclined
Bottom.’ Computational Particle Mechanics 8 (2): 315–
24. doi: 10.1007/s40571-020-00332-7.