10
[18] Ojebuoboh, F., 2008. Selenium and tellurium from
copper refinery slimes and their changing applica-
tions. In World of Metallurgy -ERZMETALL 61,
33–39.
[19] U.S. Geological Survey, 2021. Mineral Commodity
Summaries. U.S. Geological Survey: Reston, 2021.
[20] Davenport, W.G., King, M., Schlesinger M., and
Biswas, A.K. 2002. Extractive Metallurgy of Copper,
4th edition, Pergamon.
[21] Suppes, R., Heuss-Aßbichler, 2021. Resource poten-
tial of mine wastes: A conventional and sustainable
perspective on a case study tailings mining project. J.
Cleaner Prod. 297, 126446.
[22] Van der Ent, A., Parbhakar-Fox, A., Erskine, P.D.,
2021. Treasure from trash: Mining critical metals
from waste and unconventional sources. Sci. Total
Environ. 758, 143673.
[23] Bilal, M., Park, I., Hornn, V., Ito, M., Hassan,
F.U., Jeon, S., Hiroyoshi, N. 2022. The challenges
and prospects of recovering fine copper sulfides
from tailings using different flotation techniques: A
review. Minerals, 12, 586.
[24] Ghodrati, S., Nakhaei, F., VandGhorbany O., &
Hekmati, M. 2020. Modeling and optimization
of chemical reagents to improve copper flotation
performance using response surface methodology,
Energy Sources, Part A: Recovery, Utilization, and
Environmental Effects, 42:13, 1633–1648.
[25] Hudson-Edwards, K.A., Jamieson, H.E., Lottermoser,
B.G., 2011. Mine Wastes: Past, Present. Future.
Elements, 7, 375–380.
[26] Lottermoser, B.G., 2010. Mine Wastes:
Characterization, Treatment and Environmental
Impacts, 3rd Edition. 2010, Springer, Berlin,
Heidelberg.
[27] König, S., Lissner, M., Lorand, J-P., Bragagni A.,
Luguet, A. 2015. Mineralogical control of sele-
nium, tellurium and highly siderophile elements
in the Earth’s mantle: Evidence from mineral sepa-
rates of ultra-depleted mantle residues. Chem Geol.,
396,16–24.
[28] Moats, M., Alagha, L., Awuah-offei, K. 2021. Towards
resilient and sustainable supply of critical elements
from the copper supply chain: A review. Journal of
Cleaner Production, 307: 127207.
[29] Yano, R., Trace element distribution in chalcopy-
rite-bearing porphyry and skarn deposits. 2012,
University of Nevada, Reno.
[30] Reich, M., Deditius, A., Chryssoulis, S., Li, J.W., Ma,
C.Q., Parada, M.A., Barra, F., Mittermayr, F., 2013.
Pyrite as a record of hydrothermal fluid evolution in
a porphyry copper system: A SIMS/EPMA trace ele-
ment study. Geochimica et Cosmochimica Acta 104,
42–62.
[31] Corchado-Albelo, J. and Alagha, L. 2023.
Characterization of tellurium, gold, and silver in cop-
per porphyry processing streams, MINEXCHANGE
SME, Conference Denver, CO, March 1 2023.
[32] Yu, H., Zhang, T., Jing, Z., Xu, J., Qiu, F., Yang, D.,
Yu, L., 2019. In situ fabrication of dynamic nano
zero-valent iron/activated carbon nanotubes mem-
branes for tellurium separation. Chem. Eng. Sci. 205,
278–286.
[33] Wei, X., Liu, C., Cao, H., Ning, P., Jin, W., Yang, Z.,
Wang, H., Sun, Z., 2019. Understanding the features
of PGMs in spent ternary automobile catalysts for
development of cleaner recovery technology. J. Clean.
Prod. 239, 118031.
[34] Schlesinger, M. E. Sole, K. C. Davenport G. W. 2011
Davenport WG. Extractive metallurgy of copper.
5th Edition -July 26, 2011 Elsevier https://www.
elsevier.com/books/extractive-metallurgy-of-copper/
schlesinger/978–0–08–096789–9. Accessed Mar
2020.
[35] Moskalyk, R.R., Alfantazi, A.M, 2003. Review of
copper pyrometallurgical practice: today and tomor-
row. Miner. Eng. 16:893–919.
[36] Chen, Y., Zhao, Z., Taskinen, P., Liang, Y., Ouyang,
H., Peng, B., Jokilaakso, A., Zhou, S., Chen, T., Peng,
N., Liu, H., 2020. Characterization of copper smelt-
ing flue dusts from a bottom-blowing bath smelting
furnace and a flash smelting furnace. Metall. Mater.
Trans. B, 51B, 2596–2608.
[37] Mei, Q., Tian, R., Shi, Y., Hua, Q., Chen, C., Tong,
B., 2016. A series of selective and sensitive fluorescent
sensors based on a thiophen-2-yl-benzothiazole unit
for Hg2+. New J. Chem. 40, 2333–2342.
[38] Fan, Y., Yang, Y., Xiao, Y., Zhao, Z., Lei, Y., 2013.
Recovery of tellurium from high tellurium bear-
ing materials by alkaline pressure leaching process:
thermodynamic evaluation and experimental study.
Hydrometallurgy, 139, 95–99.
[39] Mahmoudi, A., Shakibania, S., Mokmeli, M.,
Rashchi, F., 2020. tellurium, from copper anode
slime to high purity product: A review paper. Metall.
Mater. Trans. B 51 (6), 2555–2575.
[18] Ojebuoboh, F., 2008. Selenium and tellurium from
copper refinery slimes and their changing applica-
tions. In World of Metallurgy -ERZMETALL 61,
33–39.
[19] U.S. Geological Survey, 2021. Mineral Commodity
Summaries. U.S. Geological Survey: Reston, 2021.
[20] Davenport, W.G., King, M., Schlesinger M., and
Biswas, A.K. 2002. Extractive Metallurgy of Copper,
4th edition, Pergamon.
[21] Suppes, R., Heuss-Aßbichler, 2021. Resource poten-
tial of mine wastes: A conventional and sustainable
perspective on a case study tailings mining project. J.
Cleaner Prod. 297, 126446.
[22] Van der Ent, A., Parbhakar-Fox, A., Erskine, P.D.,
2021. Treasure from trash: Mining critical metals
from waste and unconventional sources. Sci. Total
Environ. 758, 143673.
[23] Bilal, M., Park, I., Hornn, V., Ito, M., Hassan,
F.U., Jeon, S., Hiroyoshi, N. 2022. The challenges
and prospects of recovering fine copper sulfides
from tailings using different flotation techniques: A
review. Minerals, 12, 586.
[24] Ghodrati, S., Nakhaei, F., VandGhorbany O., &
Hekmati, M. 2020. Modeling and optimization
of chemical reagents to improve copper flotation
performance using response surface methodology,
Energy Sources, Part A: Recovery, Utilization, and
Environmental Effects, 42:13, 1633–1648.
[25] Hudson-Edwards, K.A., Jamieson, H.E., Lottermoser,
B.G., 2011. Mine Wastes: Past, Present. Future.
Elements, 7, 375–380.
[26] Lottermoser, B.G., 2010. Mine Wastes:
Characterization, Treatment and Environmental
Impacts, 3rd Edition. 2010, Springer, Berlin,
Heidelberg.
[27] König, S., Lissner, M., Lorand, J-P., Bragagni A.,
Luguet, A. 2015. Mineralogical control of sele-
nium, tellurium and highly siderophile elements
in the Earth’s mantle: Evidence from mineral sepa-
rates of ultra-depleted mantle residues. Chem Geol.,
396,16–24.
[28] Moats, M., Alagha, L., Awuah-offei, K. 2021. Towards
resilient and sustainable supply of critical elements
from the copper supply chain: A review. Journal of
Cleaner Production, 307: 127207.
[29] Yano, R., Trace element distribution in chalcopy-
rite-bearing porphyry and skarn deposits. 2012,
University of Nevada, Reno.
[30] Reich, M., Deditius, A., Chryssoulis, S., Li, J.W., Ma,
C.Q., Parada, M.A., Barra, F., Mittermayr, F., 2013.
Pyrite as a record of hydrothermal fluid evolution in
a porphyry copper system: A SIMS/EPMA trace ele-
ment study. Geochimica et Cosmochimica Acta 104,
42–62.
[31] Corchado-Albelo, J. and Alagha, L. 2023.
Characterization of tellurium, gold, and silver in cop-
per porphyry processing streams, MINEXCHANGE
SME, Conference Denver, CO, March 1 2023.
[32] Yu, H., Zhang, T., Jing, Z., Xu, J., Qiu, F., Yang, D.,
Yu, L., 2019. In situ fabrication of dynamic nano
zero-valent iron/activated carbon nanotubes mem-
branes for tellurium separation. Chem. Eng. Sci. 205,
278–286.
[33] Wei, X., Liu, C., Cao, H., Ning, P., Jin, W., Yang, Z.,
Wang, H., Sun, Z., 2019. Understanding the features
of PGMs in spent ternary automobile catalysts for
development of cleaner recovery technology. J. Clean.
Prod. 239, 118031.
[34] Schlesinger, M. E. Sole, K. C. Davenport G. W. 2011
Davenport WG. Extractive metallurgy of copper.
5th Edition -July 26, 2011 Elsevier https://www.
elsevier.com/books/extractive-metallurgy-of-copper/
schlesinger/978–0–08–096789–9. Accessed Mar
2020.
[35] Moskalyk, R.R., Alfantazi, A.M, 2003. Review of
copper pyrometallurgical practice: today and tomor-
row. Miner. Eng. 16:893–919.
[36] Chen, Y., Zhao, Z., Taskinen, P., Liang, Y., Ouyang,
H., Peng, B., Jokilaakso, A., Zhou, S., Chen, T., Peng,
N., Liu, H., 2020. Characterization of copper smelt-
ing flue dusts from a bottom-blowing bath smelting
furnace and a flash smelting furnace. Metall. Mater.
Trans. B, 51B, 2596–2608.
[37] Mei, Q., Tian, R., Shi, Y., Hua, Q., Chen, C., Tong,
B., 2016. A series of selective and sensitive fluorescent
sensors based on a thiophen-2-yl-benzothiazole unit
for Hg2+. New J. Chem. 40, 2333–2342.
[38] Fan, Y., Yang, Y., Xiao, Y., Zhao, Z., Lei, Y., 2013.
Recovery of tellurium from high tellurium bear-
ing materials by alkaline pressure leaching process:
thermodynamic evaluation and experimental study.
Hydrometallurgy, 139, 95–99.
[39] Mahmoudi, A., Shakibania, S., Mokmeli, M.,
Rashchi, F., 2020. tellurium, from copper anode
slime to high purity product: A review paper. Metall.
Mater. Trans. B 51 (6), 2555–2575.