4
Finally, even though NaCl was used in this study, it
is worthwhile to explore other discharging media. These
salts could potentially be less corrosive, helping to avoid
metal leaching from the battery (Shaw- Stewart et al.,
2019). For instance, saturated Na2SO4 solutions have
been employed to discharge lithium-ion batteries (Li et al.,
2018). Additionally, solutions such as FeSO4, and ZnSO4
have shown promising results (Ojanen et al., 2018).
REFERENCES
Bae, H., &Kim, Y. (2021). Technologies of lith-
ium recycling from waste lithium ion batteries: A
review. Materials Advances, 2(10), 3234–3250. doi.
org/10.1039/d1ma00216c.
Barnes, P. (2014). An Investigation into the Corrosion Fatigue
Behaviour of High Strength Carbon.
Steel Tensile Armour Wires Table of Contents (Issue December
2014). doi.org/10.13140/RG.2.1.1863.0883.
Bartholome, T., Hankins, K., &Keller, N. (n.d.). Lithium Ion
Batteries. In Texas A&M. doi.org/10.1063/1.3047681.
Earnshaw, A. G. N. N. (1997). Chemistry of the elements
(2nd ed). Butterworth-Heinemann.
Li, L., Bian, Y., Zhang, X., Guan, Y., Fan, E., Wu, F., &
Chen, R. (2018). Process for recycling mixed-cathode
materials from spent lithium-ion batteries and kinet-
ics of leaching. Waste Management, 71, 362–371. doi.
org/10.1016/j.wasman.2017.10.028.
Li, L., Ge, J., Wu, F., Chen, R., Chen, S., &Wu, B. (2010).
Recovery of cobalt and lithium from spent lithium ion bat-
teries using organic citric acid as leachant. 176, 288–293.
doi.org/10.1016/j.jhazmat.2009.11.026.
Liang, Z., Cai, C., Peng, G., Hu, J., Hou, H., Liu, B.,
Liang, S., Xiao, K., Yuan, S., &Yang, J. (2021).
Hydrometallurgical Recovery of Spent Lithium Ion
Batteries: Environmental Strategies and Sustainability
Evaluation. ACS Sustainable Chemistry and
Engineering, 9(17), 5750–5767. doi.org/10.1021/
acssuschemeng.1c00942.
Liu, W., &Agusdinata, D. B. (2020). Interdependencies
of lithium mining and communities sustainability in
Salar de Atacama, Chile. Journal of Cleaner Production,
260. doi.org/10.1016/j.jclepro.2020.120838.
Lozito, G. M., Lucaferri, V., Fulginei, F. R., &Salvini, A.
(2020). Improvement of an equivalent circuit model for
li-ion batteries operating at variable discharge condi-
tions. Electronics (Switzerland), 9(1). doi.org/10.3390/
electronics9010078.
Ojanen, S., Lundström, M., Santasalo-Aarnio, A., &
Serna-Guerrero, R. (2018). Challenging the concept
of electrochemical discharge using salt solutions for
lithium-ion batteries recycling. Waste Management, 76,
242–249. doi.org/10.1016/j.wasman.2018.03.045.
Shaw-Stewart, J., Alvarez-Reguera, A., Greszta, A., Marco,
J., Masood, M., Sommerville, R., &Kendrick, E.
(2019). Aqueous solution discharge of cylindrical lith-
ium-ion cells. Sustainable Materials and Technologies,
22, e00110. doi.org/10.1016/j.susmat.2019.e00110.
Zhou, M., Li, B., Li, J., &Xu, Z. (2021). Pyrometallurgical
Technology in the Recycling of a Spent Lithium Ion
Battery: Evolution and the Challenge. ACS ES&T
Engineering, 1(10), 1369–1382. doi.org/10.1021/
acsestengg.1c00067
Finally, even though NaCl was used in this study, it
is worthwhile to explore other discharging media. These
salts could potentially be less corrosive, helping to avoid
metal leaching from the battery (Shaw- Stewart et al.,
2019). For instance, saturated Na2SO4 solutions have
been employed to discharge lithium-ion batteries (Li et al.,
2018). Additionally, solutions such as FeSO4, and ZnSO4
have shown promising results (Ojanen et al., 2018).
REFERENCES
Bae, H., &Kim, Y. (2021). Technologies of lith-
ium recycling from waste lithium ion batteries: A
review. Materials Advances, 2(10), 3234–3250. doi.
org/10.1039/d1ma00216c.
Barnes, P. (2014). An Investigation into the Corrosion Fatigue
Behaviour of High Strength Carbon.
Steel Tensile Armour Wires Table of Contents (Issue December
2014). doi.org/10.13140/RG.2.1.1863.0883.
Bartholome, T., Hankins, K., &Keller, N. (n.d.). Lithium Ion
Batteries. In Texas A&M. doi.org/10.1063/1.3047681.
Earnshaw, A. G. N. N. (1997). Chemistry of the elements
(2nd ed). Butterworth-Heinemann.
Li, L., Bian, Y., Zhang, X., Guan, Y., Fan, E., Wu, F., &
Chen, R. (2018). Process for recycling mixed-cathode
materials from spent lithium-ion batteries and kinet-
ics of leaching. Waste Management, 71, 362–371. doi.
org/10.1016/j.wasman.2017.10.028.
Li, L., Ge, J., Wu, F., Chen, R., Chen, S., &Wu, B. (2010).
Recovery of cobalt and lithium from spent lithium ion bat-
teries using organic citric acid as leachant. 176, 288–293.
doi.org/10.1016/j.jhazmat.2009.11.026.
Liang, Z., Cai, C., Peng, G., Hu, J., Hou, H., Liu, B.,
Liang, S., Xiao, K., Yuan, S., &Yang, J. (2021).
Hydrometallurgical Recovery of Spent Lithium Ion
Batteries: Environmental Strategies and Sustainability
Evaluation. ACS Sustainable Chemistry and
Engineering, 9(17), 5750–5767. doi.org/10.1021/
acssuschemeng.1c00942.
Liu, W., &Agusdinata, D. B. (2020). Interdependencies
of lithium mining and communities sustainability in
Salar de Atacama, Chile. Journal of Cleaner Production,
260. doi.org/10.1016/j.jclepro.2020.120838.
Lozito, G. M., Lucaferri, V., Fulginei, F. R., &Salvini, A.
(2020). Improvement of an equivalent circuit model for
li-ion batteries operating at variable discharge condi-
tions. Electronics (Switzerland), 9(1). doi.org/10.3390/
electronics9010078.
Ojanen, S., Lundström, M., Santasalo-Aarnio, A., &
Serna-Guerrero, R. (2018). Challenging the concept
of electrochemical discharge using salt solutions for
lithium-ion batteries recycling. Waste Management, 76,
242–249. doi.org/10.1016/j.wasman.2018.03.045.
Shaw-Stewart, J., Alvarez-Reguera, A., Greszta, A., Marco,
J., Masood, M., Sommerville, R., &Kendrick, E.
(2019). Aqueous solution discharge of cylindrical lith-
ium-ion cells. Sustainable Materials and Technologies,
22, e00110. doi.org/10.1016/j.susmat.2019.e00110.
Zhou, M., Li, B., Li, J., &Xu, Z. (2021). Pyrometallurgical
Technology in the Recycling of a Spent Lithium Ion
Battery: Evolution and the Challenge. ACS ES&T
Engineering, 1(10), 1369–1382. doi.org/10.1021/
acsestengg.1c00067